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RESUMO

Este trabalho tem como objetivo propor, para pévido preco do milho no estado do
Parana, um modelo que combina a rede hibrida CNNVLE onvolutional Neural Network -
Long Short-Term Memory) com a otimizacdo de hiperparametros por meio idhoteca
Optuna. A base de dados, disponibilizada pela EsapBeasileira de Pesquisa Agropecuaria
(EMBRAPA), apresenta uma série histérica do pregondlho, no estado do Parana, no
periodo entre jan/2014 e jul/2024. Modelos de p@viCNN-LSTM e SARIMA $easonal
Autoregressive Integrated Moving Average) foram implementados na linguagem de
programacao Python. Resultados de previsdo, desntmielos, foram comparados por meio
das métricas: MAE, RMSE e MAPE. Verificou-se, para horizonte de 6 meses, que o
modelo, proposto neste trabalho, apresentou o mdiksempenho de previsdo (MAE (R$)
=1.67, RMSE (R$)=2.06 e MAPE (%)=2.95).

Palavras-chave:Redes Hibridas. Séries Temporais. Keras. Python.
ABSTRACT

This work aims to propose, for corn price foregastin the state of Parana, a model that
combines the hybrid CNN-LSTM (Convolutional Neurdlletwork - Long Short-Term
Memory) network with hyperparameter optimizatiomotilgh Optuna. The database, made
available by the Brazilian Agricultural Researchr@wation (EMBRAPA), presents a
historical series of corn prices in the state afRa, from Jan/2014 to Jul/2024. CNN-LSTM
and SARIMA (Seasonal Autoregressive Integrated Mg\Average) forecasting models were
implemented in the Python programming languageedasting results of the two models
were compared using the metrics: MAE, RMSE and MARBEvas found, for a 6-month
horizon, that the model proposed in this work pmése the best forecasting performance
(MAE (R$) =1.67, RMSE (R$)=2.06 e MAPE (%)=2.95).

Keywords: Hybrid Networks. Time Series. Keras. Python.
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1 INTRODUCAO

A cadeia produtiva do milho, um dos cereais maitivagdos no mundo, € muito
importante para o agronegdécio brasileiro. O miklim, termos de producéo e area plantada,
fica somente atrds da soja. Em conjunto com a gojan insumo basico para avicultura e
suinocultura. Portanto, tem influéncia direta, ger essencial na producdo de ragdes, no
preco das carnes (SANTOS, 2021; ATLAS, 2021).

Os maiores produtores mundiais de milho sé&o Esthlahidos, China, Brasil, Unido
Europeia e india. No Brasil, os maiores produtdeesilho, segundo a safra de 2022/23, sao
os estados: Mato Grosso, Parana, Mato Grosso ddssids e Minas Gerais. O cultivo do
milho permite trés safras anuais, sendo a segundzar producédo (BOSHIERO, 2024).

O milho, por ser uma cultura de alta produtividaekta sujeito a oscilacbes no seu
preco. Essa oscilagdo, nos precos dessamodity, impacta diretamente toda a cadeia
produtiva, influenciando custos e margens de la® produtores e industrias associadas.
Portanto, torna-se necessario desenvolver e apeaafetécnicas de previsdo de precos que
auxiliem produtores, investidores e formuladoregdkéticas publicas na tomada de deciséo
(SANTOS, 2021; SANTOS®t al. 2023).

Dentre as técnicas utilizadas, para previsdo deopreestdo a rede neural hibrida
CNN-LSTM e o modelo SARIMA. A rede CNN-LSTM, paréries temporais, combina a
capacidade das redes convolucionais (CNN) de expadlrdes locais e caracteristicas
relevantes dos dados com a habilidade das redel! [d&Tmodelar dependéncias temporais
de longo prazo. Ja o modelo SARIMA, extensdo doM¥RIque incorpora componentes
sazonais, é especialmente eficaz na modelagenvisgmale séries temporais que apresentam
padrdes recorrentes ao longo do tempo (MEDEIRO24;2BTENGHELEet al., 2020).

A integracdo de arquiteturas hibridas de redesargucomo a CNN-LSTM, com
bibliotecas avancadas de otimizacdo de hiperparésyetomo o Optuna, pode contribuir
significativamente para o desenvolvimento de malpleditivos mais precisos e com maior
capacidade de generalizacéo (DEM@I., 2024).

Vérios trabalhos, apresentados na literaturazatdim modelos, de séries temporais,
para preverem o preco do milho. Dentre eles podemitar: Cas (2018) que utilizou um
modelo ARIMA (Autoregressive Moving Average) para prever o pre¢co dammodity milho
brasileira. O periodo de analise foi de mar/200daa/2016. Concluiu, para um horizonte de
curto prazo, que o modelo ARIMA apresentou uma ipéev satisfatoria para o preco do
milho. Almeida (2018) utilizou modelos de previs@RIMA e SARIMA para previsdo do
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preco do milho no estado do Ceard. Santos (202liyout redes neurais BLSTM
(Bidirectional Long Short-Term Memory) e MLP (Multilayer Perception), para previsao do
preco do milho no estado do Parana. Verificou, pemaperiodo de 6 meses, que os dois
modelos apresentaram estimativas confiaveis. TieWarliet al. (2014) utilizaram modelos,
de Séries Temporais ARIMA e de Alisamento Exporedrde Holt-Winters, para preverem o
preco do milho no Rio Grande do Sul. Observaram guaodelo Holt-Winters aditivo
apresentou melhores resultados. Ja Sagit@s. (2023) utilizaram redes neurais LSTM e
modelos SARIMA para prever o preco do milho, n@aé@stdo Rio Grande do Sul, no periodo
entre 2011 e 2021. Concluiram que o modelo LSTMsatou melhor desempenho.

Nesse contexto, este trabalho tem como objetivpqurgpara previsdo do prego do
milho no estado do Parana, um modelo que combined@ hibrida CNN-LSTM com a

otimizacao de hiperparametros por meio do Optuna.

2 FUNDAMENTACAO TEORICA

2.1 Rede CNN-LSTM

A rede CNN-LSTM baseia-se na integracdo da redeaheanvolucional (CNN) com

a rede de memoria de longo e curto prazo (LSTM3aksbordagem hibrida é amplamente
adotada para o processamento de séries temporaes@as, como previsdo de demandas,
deteccdo de anomalias ou analise de sinais fimascd&tssa combinacdo aproveita as forcas
complementares das duas arquiteturas: a CNN, geogpas Lecun et al. (1998), foca na
extracdo automatica de padrbes locais e hierargjuienquanto a LSTM, proposta por
Hochreiter e Scimdhuber (1997), gerencia a progamage informacdes ao longo da
sequéncia temporal, mitigando problemas coma@reshing gradient em redes recorrentes
tradicionais (ZHAet al, 2022; SANTOS, 2022; LIVIERISt al., 2020, LUet al., 2020).

2.2 SARIMA
O modelo ARIMA é um dos mais populares modelostissitzos utilizados na analise
de séries temporais. Este modelo, proposto porJgokins na década de 1970, originou-se

dos modelos autorregressivos (AR), médias moéveh) @lde combinacao de modelos AR e

MA (ARMA). Neste estudo, para realizar as previsdespreco do milho no estado do
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Parand, utilizou-se o0 modelo ARIMA com sazonalidégidRIMA) (WALTER et al., 2013;
MONTGOMERY et al., 2008, BOX; JENKINS, 1976 ).

A equacédo do modelo SARIMA, definido como SARIMAlm)(P,D,Q), é dada por
(SANTOS; CHAUCOSKI, 2020):

O(BYB(B*)ASAP X, = 8(B)O(B)e, 1
Onde:
¢(B)=1—0,B—--— @,B? - € 0 operador autorregressivo estaciondrio de ordem p;
#(B)=1—6,B— - — Equ‘q — & 0 operador de médias moveis invertivel de ordem q;
@(B*)=1—@,B° — - — @,B%* — & 0 operador autorregressivo sazonal de ordem P;
f(B°)=1-6,B% —---— 8, B*1 — é o operador de médias moveis sazonal de ordem @,

A®= (1 — B)® — dindicando o nimero de diferengas;
A.= (1= B)® = é 0 operador diferenca sazonal;
A?= (1 - B®)® — D indicando o nitmero de diferencas sazonais;

g, —representa o ruido branco com média zero.

2.3 Optuna

O desempenho dos algoritmaeep learning dependem de como séo ajustados o0s seus
hiperparametros. Em redes neurais artificiais, ogarhiperparametros necessitam ser
ajustados, por exemplo, a taxa de aprendizagerinneno de épocas de treinamento, a funcéo
de ativacao, entre outros. Ajustes manuais sa@ieetes e propensos a erros, especialmente
em espacos de busca de alta dimensionalidade, cujasinacdes subotimas podem levar a
overfitting, underfitting ou treinamento excessivamente demorado.

Nesse contexto, técnicas de otimizacdo automaidapdrparametros emergem como
solugdes essenciais para explorar eficientemengéspaco de configuracdes possiveis. O
Optuna € uma bibliotecapen-source em Python projetada especificamente para o ajuste
automatico de hiperparametros em tarefasndehine learning e deep learning, permitindo

uma busca inteligente e eficiente por meio de @lgos bayesianos (DENG al., 2024).
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3 MATERIAIS E METODOS

Aborda-se, nesta secdo, a metodologia utilizadi niegbalho, apresentando a base de

dados, as etapas do trabalho, bem como as méittiizadas.

3.1 Base de dados

Utilizou-se, para previsdo, no estado do Paran@relm do milho em graos no varejo
(60kg - R$), uma base de dados com 127 meses Q1dnf2Jul/2024) obtida da Empresa
Brasileira de Pesquisa Agropecuaria (EMBRAPA). Npufa 1 apresenta-se a série historica

do preco do milho.

Figura 1 — Série historica do preco do milho
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Fonte: Os autores.

A série historica do preco do milho no Parana el20&4 e 2024 revela forte
volatilidade, com destague para 0s picos regissraglm 2021 e 2022, quando o valor
ultrapassou R$ 90 por saca de 60 kg. Os picoset® mo milho em 2021 e 2022 coincidem
com o periodo da pandemia de Covid-19 (11 de mdec@020 até 05 de maio de 2023
(OPAS, 2023)) e estao fortemente associados aactogpecondmicos e logisticos causados
por ela.

Observa-se, que os dados, para eliminar as difeserde dimensdo, foram
normalizados por meio da funcdo MinMax (ARUKUMARal., 2022; POLCet al., 2024)
(Equacéo 2).
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X~ Xmin

o X omin

Ondex sao dados da série originghn € valor minimo da série temporak®x 0 valor

maximo.

3.2 Etapas do trabalho

Basicamente este trabalho foi dividido em trés agtafNa primeira etapa, com o
objetivo de obter informacdes sobre os dados obtidoEMBRAPA, realizou-se uma analise
exploratoria (Etapa de Analise de Dados). Na segaéma Etapa de Treinamento e
Validacao, implementaram-se os modelos SARIMA e @NBYM. Na ultima etapa, Etapa de
Teste, realizaram-se o0s testes nos modelos SARIMANBI-LSTM. Analisando-se seus
desempenhos, na previsao do preco do milho, pop neidados que n&o participaram do

processo de treinamento e validagcao

3.3 Métricas

O desempenho dos modelos, implementados nestdhtvalfaram avaliados pelas
seguintes métricas (OLIVEIRA; SANTOS, 2024; CANKURSUBASI, 2015):
Mean Absolute Error (MAE):

MAE=%Z|(}’5_?5]|[R$] 3

Root Mean Squared Error (RMSE):

.
1 ﬂ
RMSE = J;thm — $)2) (RS) 4

Mean Absolute Percent Error (MAPE):

1 T
MAPE =— ) |(7,— 3)/7,] X 100(%) 5
T
i=1
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Onde:y, € o valor real do periodpy. € a previsédo para o perioden € o nimero de

observacg6es. Quanto mais proximo de zero, os wllgeMAE, RMSE e MAPE, maior a
precisdo dos modelos (LU et al., 2020).

4 RESULTADOS E DISCUSSOES
4.1 SARIMA

Inicialmente, na modelagem SARIMA, identificou-gm®mr meio do teste de
AKAIKE (AIC) da biblioteca pmdarima, o modelo SARMM1,1,0)(3,1,1).. Na sequéncia, a
normalidade dos residuos foi verificada por meio tdste de normalidade Jarque-Bera
(Jarque-Bera normality test), que obteve um p-valor de 0.73. Observou-se, éamlalevido
aos coeficientes de correlacdo néo ultrapassarefimiies de confiancaQorrelogram —
Figura 2), que os residuos ndo sdo autocorrelatdasnaPortanto, os testes estatisticos

realizados bem como o diagnéstico dos residuodaralin o modelo proposto.

Figura 2 — Gréaficos do modelo SARIMA

AN ‘
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IR -

Fonte: Os autores
4.2 CNN-LSTM

Na Etapa de Treinamento e Validacdo, com o objetigoencontrar os melhores
modelos de previsdo, varios hiperparametros foréimizados por meio do Optuna. Na
Tabela 1, apresentam-se 0s hiperparametros, osadlite de buscas e os parametros 6timos
encontrados pelo Optuna. As redes neurais foramattas com 84 amostras (70%) e
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validadas com 37 amostras (30%). Observa-se q@ecoawvergéncia do algoritmo de busca

utilizou-se a métrica MAE.

Tabela 1 — Parametros da rede CNN-LSTM

Hiperparametro Intervalo de Busca Valores Otimos
Epochs [100,500] 300
Batch [10,60] 55
LSTM activation function [tanh,relu] tanh
Convolution layer kernel size [3,9] 3
Convolution layer filters [8,128] 128
Numbers of hidden unitsin LSTM layer [8,128] 128
Pooling layer pool size [1,2] 1
Dropout [0.1,0.5] 0.32
Learning rate [0.00001,0.1] 0.00021
Optimizer [RMSprop, Adam] RMSprop

Fonte: Os autores.

Na sequéncia, realizaram-se previsoes, do pregoiltlo, para os meses de fevereiro,
marco, abril, maio, junho e julho de 2024 (ConjutéoTeste), que nao participaram da etapa

de selecéo dos hiperparametros (Tabela 2).

Tabela 2 — Dados observados (EMBRAPA) e preditosARIMA e CNN-LSTM) — R$
MESES EMBRAPA SARIMA CNN-LSTM

fev/i24 55.98 60.5 56.26
mar/24 55.39 57.97 55.04
abr/24 56.28 54.54 55.23
mai/24 58.02 57.74 54.66
jun/24 56.07 57.74 54.01
jul/i24 55.5 52.74 52.54

Fonte: Os autores

Observa-se, a partir dos resultados apresentaddsbela 2, que o modelo hibrido
CNN-LSTM apresentou, quando comparado ao modediststo SARIMA, valores preditos
mais proximos aos observados pela EMBRAPA. Essdamidade indica melhor capacidade
da rede neural em capturar padroes complexos éne@oes nos precos do milho, refletindo
maior precisao nas previsoes.

Os resultados das previsdes, em termos graficas,apéesentados na Figura 3.
Observa-se, desta figura, que o modelo CNN-LSTMrg@amha de forma mais consistente a
tendéncia dos precos reais (EMBRAPA), mantendorégimpo aos valores observados ao
longo do periodo. J& 0 modelo SARIMA tende a aptesenaiores desvios, notadamente nos

Rev. FSA, Teresina PI, v. 23, n. 1, &itp. 109-121, jan. 2026 www4. Unifsanet.cavndvista K588



D. N. C. Luz, J. A. A. Santos 118

meses de fevereiro, abril e julho, nos quais oggar@revistos se afastam mais dos valores
reais.

Figura 3 — Resultados das previsdes — Conjunto de3te
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Fonte: Os autores.

Os resultados das métricas MAE, RMSE e MAPE, pafopjunto de Teste, sdo
apresentados na Figura 4.

Figura 4 — Resultados das métricas — Conjunto de $&
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Fonte: Os autores.

Os valores, apresentados na Figura 4, indicam quedelo CNN-LSTM superou o
SARIMA em todos os critérios avaliados. O MAE doKGNSTM foi de R$ 1,67 contra R$
2,25 do SARIMA, evidenciando menor erro médio nesvigdes do modelo hibrido. Da
mesma forma, o RMSE do CNN-LSTM (R$ 2,06) ficouiabalo SARIMA (R$ 2,6), o que
reforca 0 menor desvio padrdo dos erros e indidarrpeecisdo, especialmente na presenca
de eventuaisutliers.

Quanto ao MAPE, o valor para o CNN-LSTM foi de 285nquanto o SARIMA

obteve 4,04%, mostrando que o erro relativo, enmdsr percentuais, também é
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significativamente menor para o modelo de rede atelsso sugere maior capacidade de
generalizagdo do CNN-LSTM em relacdo ao SARIMAnelde maior robustez frente as

variacbes no comportamento dos dados de precoldo.mi

5 CONSIDERACOES FINAIS

Este estudo prop6s a utilizacdo do modelo CNN-LSDMuna para previsao do
preco do milho no estado do Parana, combinandaatetura hibrida CNN-LSTM com a
otimizacdo de hiperparametros por meio da bibleot€@ptuna. A eficacia, do modelo
proposto, foi avaliada por meio da comparacdo derdpenho entre a rede hibrida CNN-
LSTM, otimizada com o Optuna, e 0 modelo SARIMArdfo utilizados, na constru¢cédo dos
modelos, dados reais de precos do milho, coletadtre janeiro de 2014 e julho de 2024,
totalizando 127 observa¢cdes mensais, 0 que contdristez a analise temporal.

Os resultados das previsdes, dos dois modelosnfavaliados no conjunto de teste
(Fev/2024 a Jul/2024), utilizando as métricas MRE|SE e MAPE. Na comparacédo entre o
modelo proposto e o tradicional SARIMA, o CNN-LSTdfimizado apresentou menor erro
absoluto médio (MAE: R$ 1,67), raiz do erro quadoamédio (RMSE: R$ 2,06) e erro
percentual absoluto médio (MAPE: 2,95%), enquan®AKIMA obteve MAE de R$ 2,25,
RMSE de R$ 2,60 e MAPE de 4,04%. Esses indicaddeesonstram que a abordagem
baseada em redes neurais hibridas, para um ha&izntseis meses, é mais eficaz para
capturar a dindmica dos precos do milho e ofengeastisées mais precisas.

Em sintese, este trabalho contribui com uma feméange suporte potente e adaptavel
ao contexto agricola, potencializando o apoio aattarde decisdes para produtores e agentes
do setor. Propbe-se, como sugestéo para trabalhoed, a aplicagéo e validagdo do modelo
CNN-LSTM-Optuna em outras regides produtoras deéhando pais, a fim de testar sua

generalizacao e robustez em diferentes dinamicasedeado e condi¢des regionais.
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