<document>
<page>
<par>
<line>
Centro Unv*rsitário Santo Agostinho
</line>
</par><par>
<line>
www*.fsanet.com.*r/revista
</line>
<line>
Rev. FSA, Tere*i*a, *. *8, n. 7, art. 10, p. 160-172, *u*. 20*1
</line>
<line>
ISSN Impresso: *806-6356 I*SN Ele*rônico: 2317-2983
</line>
<line>
http://dx.doi.org/10.12819/20*1.18.7.10
</line>
</par><par>
<line>
*ybrid Metaheuristic Algorithm (*a*ac) Used in *pt*mizat**n of Vacuum Coo**ng Treatmen* of
</line>
<line>
Postharv*st Br*c*oli
</line>
<line>
Algor*tmo Metaheur**tico *íbrido (Sa*ac) U*ado na *t*mizaçã* do Tratamento de
</line>
<line>
Res*ri*mento a Vácuo do ***ccolis Pó*-Colheita
</line>
</par><par>
<line>
Marco *ntônio Ca*pos Benveng*
</line>
<line>
Doutorado em Eng*nh*ria de Produção *ela Unive*si*ade Paul**ta
</line>
<line>
Mest*e e* Engenharia *e **odução p*la Universidade *o*e de Julho
</line>
<line>
*-mail: marcoc*mpos453@yahoo.com
</line>
<line>
*ren*lza de Alenca* Nää*
</line>
<line>
Do*tora *m PhD in Ag*ic*l*ural Engi*eer*ng Michigan St*te University
</line>
<line>
Professora da Un*versidade Paul*s*a - *N*P
</line>
<line>
E-*ail: i*eni**a.naas@docente.un*p.*r
</line>
</par><par>
<line>
End*reço: Marco *ntonio C**p*s Benvenga
</line>
<line>
Editor-Chefe: *r. Tonn* K*rley de Al**c*r
</line>
</par><par>
<line>
Av. *aulista, *00 - Bela Vis**, São Paul* - SP, 0131*-
</line>
<line>
Rodrigue*
</line>
</par><par>
<line>
100. B*asil.
</line>
</par><par>
<line>
Ende*eço: Iren*lza de *lencar Nä**
</line>
<line>
Artigo re*ebido em 14/06/2*21. Ú*t*ma
</line>
<line>
versão
</line>
</par><par>
<line>
Av. Paulist*, 9*0 - Bela V*sta, São **ulo - SP, *1310-
</line>
<line>
recebida em 27/06/*021. Ap**vado em 28/06/2021.
</line>
</par><par>
<line>
100. Bras*l.
</line>
</par><par>
</page><line>
Avalia*o pelo sistema Triple Rev*ew: Des* R*view a)
</line>
<line>
pel* Editor-Ch*fe; e *) D*ubl* Blind Review
</line>
<line>
(*valiação cega por doi* avaliado*es d* á*ea).
</line>
<line>
Rev*são: Gramatical, Norm*tiva e de Fo*ma**ção
</line>
</par><page>
<par>
<line>
Hyb*id Met*heuri*t*c Alg*rithm (Sagac) Used i* Opt*mization of Vac*um Cooling Treat*e**
</line>
<line>
16*
</line>
</par><par>
<line>
ABSTRACT
</line>
</par><par>
<line>
*his researc* aim* to analyze t*e applicat*on of the hybrid metaheurist*c a*go*ithm SAGAC,
</line>
<line>
which is composed *f the S*mul*ted Annealing (SA) and Genet*c Algorith* (GA) t*chniques
</line>
<line>
*ith the inclusion of a converg*nce accel**ation (AC) mechanism. SAGAC was u*e* *o
</line>
</par><par>
<line>
o*t i m i z e
</line>
<line>
t **
</line>
<line>
pos*ha*v**t broccol* vacuu* cooling *rocess. Anot*e* concer* included in the
</line>
</par><par>
<line>
algorith* i* p*pulation di*ersity, and, for t*i* *i*u**ion, a high mut*tion rate (40%) and a l*w
</line>
<line>
e*itis* rate (10%) w*re used. Th* object*ve of maintaining population diversi** is to avoid
</line>
<line>
prem*ture and undue convergen*e *f the res*lts curve. *h* S*GAC algorithm's performance
</line>
</par><par>
<line>
w*s compar*d *ith another type of a*proach *n
</line>
<line>
*ptimizing this process, w*ich *sed the
</line>
</par><par>
<line>
Res*on*e Surface (R*M) methodol*gy
</line>
<line>
comb*n*d w**h th* G*n**ic Algo*ith* (G*), *ere,
</line>
</par><par>
<line>
*all*d *SMGA *n thi* present st*d*. *he resu*ts obt*ined sh**e* that the SA*AC algorithm
</line>
<line>
obtained be*ter results concerning RSMGA in op*imizing this process.
</line>
<line>
Key-wo*ds: Algorithms. Optimization. SAGA*. Metah*urístics.
</line>
<line>
RESUMO
</line>
<line>
Esta *esquisa t*m o o*jetiv* d* anal*sar a aplicação do algo**tmo *etaheurís*ico híbrido
</line>
<line>
S*GAC, o qual é composto dos algoritmos, Si**lated Annealing (S*) e o Algoritmo
</line>
<line>
Genéti*o (GA) co* a inclusão de um me*anismo de aceleração de conve*gência *e re*ultados
</line>
<line>
(AC). O SAGAC foi u*ado par* otimizar o *rocesso de *esfr*amen*o à vác*o do brócolis após
</line>
<line>
a col*eita. Outra preocup*çã* incluída no a*goritmo é a diversid*de da popula*ão, e, para essa
</line>
</par><par>
<line>
s*tuação, foram u*ilizadas uma alta t**a de mutação (4*%) e
</line>
<line>
uma baixa ta*a de elitismo
</line>
</par><par>
<line>
(10%). O obje*i*o de ma*t*r a diversidade popul*cional é e*itar a convergênc*a pr*m**ura e
</line>
</par><par>
<line>
indevida d* curva *e resulta*os. O
</line>
<line>
des*mpenho do
</line>
<line>
algoritmo SA*AC *o* com*arado com
</line>
</par><par>
<line>
*utro tipo de abor*ag*m na o*imização de*te *roce*so, que ut*li*ou a metodologi* *e
</line>
<line>
Superf**ie de Resposta (*S*) combinada *om o *lg**itmo Genético (GA), *q*i,
</line>
<line>
denominado RSMGA no pre*ente estudo. *s resultados *btidos m*straram qu* o a*gor*tmo
</line>
<line>
SA*AC obteve mel*ores r*sultados em relaçã* ao RS*GA *a ot*mização des*e proce*so.
</line>
<line>
Pa*a*ras-chave: Al*o*it*o*. Otim*zação. SAG*C. Metaheu*ística.
</line>
</par><par>
</page><line>
*ev. FSA, Ter*sina PI, v. 18, n. 7, art. 10, p. 16*-172, jul. 202*
</line>
<line>
www4.fsa*et.com.br/revista
</line>
</par><page>
<par>
<line>
M. A. C. Be**enga, I. A. Nääs
</line>
<line>
*62
</line>
</par><par>
<line>
1 INTR*DUCTION
</line>
</par><par>
<line>
According to Santana et al. (2*18), broccol* is a fo** ri*h in vitamin C, f*ber, and
</line>
<line>
***tiple *ther nut*ients with potent *nti-c*n*er prop*r*ie*. In t*e wor*d, *hina and India are
</line>
<line>
the largest pr*ducers of this **getable, and toge*her they pro*uce *ore th** 7*% of all glob*l
</line>
<line>
product*on. According to *an*ana et al. (2018), broccoli has * sho*t shelf *ife at room
</line>
<line>
t*mperature. **nce, the *earch fo* effic*ent ways to preserve this type o* food's **lidity and
</line>
<line>
n*triti*n** *r*p*rtie* b*comes *ssential.
</line>
<line>
In *lib*s & K**sal (2014), Ca*valho & Clemente (2004), and Corcuf* et *l. (1*96),
</line>
</par><par>
<line>
there are several techniq*es to improv* the shelf life of food, *u*h a* dry*ng, freezin*,
</line>
<line>
an*
</line>
</par><par>
<line>
mod*f**ation in most p*c*aging. In McDonalds e* al. (2002), vacuum cooli*g i* a*hieved *y
</line>
<line>
ra*idly remo**ng *e*t from the p*o*uct by evaporatin* wat** ***m the su*face and pores. For
</line>
</par><par>
<line>
Zhan* & Sun (2006),
</line>
<line>
vacuum cooling has been repor**d
</line>
<line>
as a highl*
</line>
<line>
*f*icient *ethod to
</line>
</par><par>
<line>
*xt*nd t*e **elf li*e *nd impr**e biologic*l safety. According to *unes et al. (2**5), t*e*e ha*
</line>
<line>
been an increase i* the devel*pmen* of competit**e and electr*nic approac*es to agric*ltu*al
</line>
</par><par>
<line>
*a*ks *n recent decade*, *u*h as harvestin*, s**ing, gro*th
</line>
<line>
mo*ito*ing, soi* anal**i*,
</line>
<line>
and
</line>
</par><par>
<line>
chemic** treat**nts. Such approaches, *n
</line>
<line>
examp*e o* the menti*ned approaches, *se hybrid
</line>
</par><par>
<line>
a*gorithms to *p*im*ze p*ocesses, *spec*ally to reduc* *h* *earch s*ace to find the ide*l
</line>
</par><par>
<line>
cond*tio*s and, thus, r*duce t*e *om**tati*nal time (CHAVES et al.,
</line>
<line>
2*07). A*basi &
</line>
</par><par>
<line>
Mahlooji (*0*2) ap*lied **e simulate* annea**ng (SA) **chnique *n*
</line>
<line>
th* r*sponse surface
</line>
</par><par>
<line>
meth*dology (RSM) to exp**r*s the *el*tio*sh*ps between s*ve*al *xplan*tor* **riables *nd
</line>
<line>
one or mo*e re*ponse variables.
</line>
<line>
This research aimed to invest*gate *he SAGAC hybrid algorithm's p*rformance
</line>
</par><par>
<line>
compared t* the RSMGA approach by *antana e* al. (2018) to optimiz* th*
</line>
<line>
*osthar*e*t
</line>
</par><par>
</page><line>
broc*oli vac*um cooli*g p*o*e*s. The *ain bene*it o* t*e pro*osed approach is *he increase
</line>
<line>
in *he pr**ucer*' *r*fit **e to the *e*uction *btained with the *mp*eme*ta*ion o* th* SAGAC
</line>
<line>
algorithm.
</line>
<line>
2 MATERIALS AND *ETH**S
</line>
<line>
*.1 Vacuum coolin* t*eatments
</line>
<line>
**cording to Santa*a et al. (2018), t*e vacuum coolin* *reatme*t w*s *mple*ented b*
</line>
<line>
a s*l*-develo*ed vacuum cooler w*th a wat**-sprayi** unit *onnected w*t* the wate* pipe and
</line>
<line>
Re*. FSA, Teres*na, *. 18, n. 7, art. 1*, p. 160-172, *ul. 20*1 *w*4.fsanet.*om.br/revis*a
</line>
</par><page>
<par>
<line>
Hyb*id Metaheuristic Algorithm (S*gac) Used in O*ti*iza*ion *f Vacuum C*oling *reat*ent
</line>
<line>
163
</line>
</par><par>
<line>
vacuum chamber. The water-sp*a*ing volume ca* be controlled in *his sy**em.
</line>
<line>
Th*
</line>
</par><par>
<line>
equipment was d*vel*ped in **romed steel, with a* int*rnal vo**me of 1m3, and *t was made
</line>
</par><par>
<line>
i*
</line>
<line>
the Departmen* o*
</line>
<line>
Food Scienc* and *u**ition, Sc*ool of Biosystems *ngineerin* and
</line>
</par><par>
<line>
F*od *cie*ce, Zhejiang U*ive**ity, *ity of Hangzhou, *hejian* Prov*nce, Ch*n*. *n this
</line>
<line>
study, the pressure in the vacuum cham*er (200, 400, *nd 600 Pa), *he wa*er-sprayi*g
</line>
<line>
*olu*es (3%, 4%, and6%), *nd the p*oc*ssin* *ime (*0, 30, and 40 mi*) were *ar**d to
</line>
<line>
in*e*tigate th*ir *ynthetic effects on the weight loss(Wloss) of b**c*oli durin* t*e vac*um
</line>
<line>
cooling process (*libas & Koksal, *014; D*n* et a*., *0*1; Zhang & Sun, 2006).**e
</line>
<line>
p*ocessing **m* is *h* cooling *ime *e*uir*d to r*ach the e*perim*ntal design pressure
</line>
<line>
*onditions wit*in the re*rigerator.
</line>
<line>
2.2 *odeling p*ocess
</line>
<line>
An *xperim**tal design was u*ed f*r the organ*zation of the ass*y of this exp*rimen*.
</line>
<line>
*fter the experiments' execution (duplicate), the minimum **uare *eth*d wa* applied to the
</line>
<line>
experimental *ata to *btain the model (Santana et al., 2018). Wa* con*id*red *he f*llowing
</line>
<line>
*actors: pressure, * (*1), bro***li weig*t, W (x2), water vo**me, * (x3), and proce*sing time, t
</line>
<line>
(x*); as well as the fo*lowing respons*s: loss of we*ght (y*), Wloss, and end t*mperatur*(y2),
</line>
<line>
T*nd. Because o* the effect *f inconsistenc*es cause* dur*ng the computations, *t was ne*es**ry
</line>
<line>
*o norma*iz* the variable* xi[1, *].
</line>
<line>
The mathematical f**mulation of this pro*le* is summarized in the fol*owing
</line>
<line>
*quation*:
</line>
<line>
We*ght loss is cal*ul*ted by equation
</line>
<line>
(1)
</line>
<line>
The end tempera*ure is *alc*l*ted b* *quati*n
</line>
<line>
(*)
</line>
</par><par>
<line>
Do*ain of varia**es:
</line>
</par><par>
</page><line>
x1 [200 ; 600]; x2 [200 ;500]; *3 [0.*3 ;0.06]; x4 [20 ;40]
</line>
<line>
Rev. FSA, Te*e*ina PI, v. 18, n. 7, art. 10, p. 16*-*7*, j*l. 2021 www*.*sanet.*om.br/revista
</line>
</par><page>
<par>
</par>
<par>
<line>
whe*e *nd are t*e w*ight of Wloss and T*nd, resp**tively.
</line>
<line>
The norma*i*ed val*es of variabl*s are calcu*ated b* equatio*
</line>
<line>
(4)
</line>
</par><par>
<line>
In China, the typi*al p*i*e f*r broccoli i* 4.* US$/ kg, and *or kWhis 8 cents. These *alues
</line>
<line>
were used to calcu*at* Eq.'s *ot*l profit (5) (S*NTANA et a*., 2018).
</line>
<line>
(*)
</line>
</par><par>
<line>
The success of any bus*nes* is related to maxim*zi*g profits. *n t*is case study, it is
</line>
<line>
related *o the m*nimization of Wloss. Then, if minimu* Wloss is found, *h* ma*imum profit
</line>
<line>
will *e f*und as wel*.
</line>
</par><par>
</page><line>
Re*. FSA, Teresina, v. *8, n. 7, a**. 1*, *. 160-172, jul. 2021
</line>
<line>
www4.fsanet.*om.br/revista
</line>
</par><page>
<par>
<line>
Hy*rid Metaheuristic Algorithm (S*ga*) Used in O*timization of Vacuum Cooling Tr*atment
</line>
<line>
*65
</line>
</par><par>
<line>
3 *HE HYBR** MET*HEURIST*C *LGORIT*M (S*GAC)
</line>
</par><par>
<line>
*wo algorit*ms form *h* al*ori*hm: the Simulated *nnealing (SA) and *he Genetic
</line>
<line>
Algorithm (AG) wi*h *he i*clusio* of a *echa*ism (func*ion) that *r*motes an acceleration in
</line>
<line>
the con*er*e*ce (A*AC) of the obtain*d results.
</line>
<line>
The *A a*g*ri*hm a*ts o* *he *eneratio* of i*dividuals who make *p the modified
</line>
<line>
genetic a**orithm's i*itial populat*on (A***). With the *se *f the SA algorithm, i* is poss*ble
</line>
<line>
to have *he c*mpo*it*on of a g*od qu*lity initial popu*ation, that is, pre-opt*mized i*divid*als.
</line>
<line>
The routine behav*or of the AGAC algorithm prom*tes Conve*gence Accelerati*n in
</line>
<line>
which, aft*r cr*ssi*g, th*re is an ass**sment of the in*ividuals (Sons) generate* and a check
</line>
</par><par>
<line>
**r qu*lity imp*ovement co*ce*ning th* indivi*uals of
</line>
<line>
the elite gro*p of the populat*on. If
</line>
</par><par>
<line>
s*c* *ev*lop*ent
</line>
<line>
d**s not occur, the in*ivi**al (s) of the child(ren) is(are) discarded,
</line>
<line>
t *e
</line>
</par><par>
<line>
individual (paren*) of the worst *uality is e*changed for a*o*her indiv*dual ** the el*t* group
</line>
<line>
*ho is closest and is bett*r *h** **e ind*vidual (Father) who w*s chang*d.
</line>
<line>
A*ter the individual'* chan*e (*ather), a new crossing occu*s f*r the mis*in* *hil*'s
</line>
<line>
generation (s). This sequ*nce o* s*eps will be repeated u*til bo*h chi*dren meet th* c*it**ia fo*
</line>
<line>
imp*ovement or the stipulated number of at*empt* is reached. Fi*ure 1 s*ows the flowch**t o*
</line>
<line>
the SAGAC hybr*d algorithm.
</line>
</par><par>
</page><line>
Rev. *SA, Teresina PI, v. 18, n. 7, art. 10, p. *60-17*, *ul. 2021
</line>
<line>
www4.fsanet.com.br/rev*s*a
</line>
</par><page>
<par>
<line>
M. A. *. Benve*ga, I. A. Nääs
</line>
<line>
166
</line>
</par><par>
<line>
Figure 1 - Sc*eme of the *ybrid SAGAC algori**m.
</line>
</par><par>
</par>
<par>
<line>
Y*s
</line>
<line>
Stoping
</line>
</par><par>
<line>
Apply SA to
</line>
<line>
Cr*teria
</line>
<line>
*inish
</line>
</par><par>
<line>
improv* I*d***dua*
</line>
<line>
OK?
</line>
<line>
N*
</line>
</par><par>
<line>
Save Imp*oved
</line>
<line>
Select best
</line>
</par><par>
<line>
Individual in Initial
</line>
<line>
Individu*ls
</line>
</par><par>
<line>
*opulation
</line>
<line>
Yes
</line>
<line>
Crossov*r
</line>
</par><par>
<line>
Q*y.AGAC
</line>
<line>
Initial
</line>
<line>
Population OK?
</line>
</par><par>
</par>
<par>
<line>
With ea*h cycle *f proce*si*g of the Simula*ed Annealing (SA) algorit*m, the b*st
</line>
<line>
*esult (individua*) is store* t* compo*e the initial po*ulation used by the modified Genetic
</line>
<line>
*lgor*thm w*th con*erg*nce acceler*tion mec*an*sm (AGAC).
</line>
<line>
Figure 2 show* the original scheme of a G*net** Algorithm, a*d, in *eque*ce, *i*u*e 3
</line>
<line>
s*o*s the Genetic *lgorithm wit* *he inc*usi** of the conve*gence acc*leration mecha*ism.
</line>
</par><par>
</page><line>
Rev. *SA, Ter*sina, v. 18, n. 7, art. 10, p. 160-172, ju*. 2**1
</line>
<line>
www4.fsa*et.com.*r/revist*
</line>
</par><page>
<par>
</par>
<par>
</par>
<par>
<line>
Fi*ure 3-Sc*eme *f a Genetic Alg*rith* w*th conve*gence acceleration m*c*anism.
</line>
</par><par>
<line>
F*gure* 2 a*d 3 show the chang* in the Genetic Algo*ithm u*ing the c*nv*rgence
</line>
<line>
acceleration m*chanism. *his m*c*anism in*rease* the *robability of a contin*o*s
</line>
<line>
i*dividual*' evol*tion o*er the generations. In eac* ge*eration of o*f*prin*, the alg*ri*hm
</line>
<line>
c*ecks whether they h*ve the minimum qua*ifications to *e part of the elit* and, if this doe*
</line>
</par><par>
</page><line>
R*v. FSA, Teresina P*, v. 18, n. 7, art. 10, *. 160-*72, jul. 2021
</line>
<line>
*ww4.f**net.com.br/revista
</line>
</par><page>
<par>
<line>
M. A. C. Ben*enga, I. A. Nää*
</line>
<line>
168
</line>
</par><par>
<line>
no* *ccur, *here is a dispo*al of these off*prings and the generation of othe*s, after changin*
</line>
<line>
one of the parents with the worst evaluation.
</line>
<line>
3.*.*etu* *arameters of SAGAC
</line>
<line>
In S*GA*, *he va*iables that influence the algorithm's behavior are its processing
</line>
<line>
p*ra*e*ers (*OUZA et al. 2017, *A*TANA et al. *011, *ITCHEL 1997, KIRKPATRICK
</line>
<line>
et al. 198*).
</line>
<line>
Parameters of SA
</line>
<line>
1º. Initial Te*perat*r* = 1*0;
</line>
<line>
It is the n*mb*r of cycles that wil* be processe* *n an algo*i*hm repetit*on lo**;
</line>
<line>
2º. TDS = 1;
</line>
</par><par>
</par>
<par>
<line>
Figure 4 shows the
</line>
<line>
evo*ution cur*es of the va*ues of the factors Wloss, Tend, an*
</line>
<line>
t he
</line>
</par><par>
<line>
v*lue of *he O*jective Func**on (OF) of t*e be*t individuals *n each generati*n during the
</line>
<line>
1*00 gene*ations p**cessed by *he SAGAC algorithm.
</line>
</par><par>
</page><line>
R*v. FSA, *er*s*na, v. 1*, n. 7, *rt. 10, p. 160-172, jul. 2*21
</line>
<line>
www4.**anet.*om.br/re**sta
</line>
</par><page>
<par>
<line>
Hybrid Meta*eu*ist*c A*gori*hm (S*gac) *sed in Opt*miz*tion of Vacuum *ool*ng Treatment
</line>
<line>
1*9
</line>
</par><par>
<line>
F*gure 4-Behavior *f Wloss, Te*d, and Objecti*e *unction (OF) fac*ors in
</line>
</par><par>
<line>
optimizingb*occol*'s vacuum coolin* process.
</line>
</par><par>
<line>
3
</line>
<line>
2 ,5
</line>
<line>
2
</line>
<line>
%,5 1
</line>
<line>
1
</line>
<line>
0 ,5
</line>
<line>
0
</line>
</par><par>
<line>
*
</line>
<line>
*
</line>
<line>
3
</line>
<line>
4
</line>
<line>
5
</line>
<line>
6
</line>
<line>
7
</line>
<line>
8
</line>
<line>
*
</line>
<line>
10
</line>
</par><par>
<line>
Ge**rations x 1*0
</line>
</par><par>
<line>
OF
</line>
<line>
T*nd
</line>
<line>
W*oss
</line>
</par><par>
<line>
It *s noted in F*gur* 4 th*t the Tend and OF fact*r* pre*ent ** osci*la*ing *ehavior an*
</line>
</par><par>
<line>
dif*erent **om the *loss factor, *hich p*esen*s * *egative converg***e, whi*h means
</line>
<line>
a
</line>
</par><par>
<line>
d**rease in th* weight loss of the p*oduct. *he *n*rease i* p**fit is inv*rsely rel*ted to the
</line>
<line>
d*crease in the Wloss factor.
</line>
<line>
Ne*t, in Fi*ure 5, the "P**fit" co*ve*gence curve is show*.
</line>
</par><par>
</page><line>
Rev. F*A, Ter*sina PI, v. 18, n. 7, *rt. *0, p. 160-172, jul. 2021
</line>
<line>
*ww4.fsanet.com.br/r**ista
</line>
</par><page>
<par>
<line>
M. A. C. Benvenga, I. *. Nääs
</line>
<line>
170
</line>
</par><par>
</par>
<par>
<line>
96,151 7
</line>
<line>
2
</line>
<line>
3
</line>
<line>
4
</line>
<line>
5
</line>
<line>
6
</line>
<line>
7
</line>
<line>
8
</line>
<line>
9
</line>
<line>
10
</line>
</par><par>
<line>
G*nerations x 1**
</line>
</par><par>
<line>
Figure 5 indicates tha* after 600 generations pr*ces**d by SAG*C, there is a
</line>
<line>
stabiliz*tion of the curve conver*ence, with small *ain*.
</line>
<line>
Table 1 *ompares the res*l** obtained by *he RSMGA and SAGAC alg*rithms in
</line>
<line>
optimizing vacuum cooling treatment o* p*stharvest broc*oli.
</line>
<line>
Table 1-Co**a*is*n of t** RSMGA and SAGAC algor*th*s' results to optimizethe
</line>
<line>
v*cuum *ooling of br*ccoli.
</line>
<line>
A*g*rith
</line>
</par><par>
<line>
m
</line>
<line>
X1
</line>
<line>
X2
</line>
<line>
X3
</line>
<line>
X4
</line>
<line>
Wloss
</line>
<line>
Tend
</line>
<line>
OF
</line>
<line>
P*of*t
</line>
</par><par>
<line>
2 0 0 ,0
</line>
<line>
273,5 to
</line>
<line>
* ,0
</line>
<line>
4 * ,0
</line>
<line>
* .3 4 ±
</line>
<line>
2 .0 0 ± 0 ,5 0 * 3 2
</line>
<line>
9 9 .6 6 ±
</line>
</par><par>
<line>
RSMGA
</line>
<line>
*
</line>
<line>
* 7 8 ,0
</line>
<line>
3
</line>
<line>
0
</line>
<line>
* .* 1 %
</line>
<line>
* .0 0 % 7
</line>
<line>
0 .0 1 %
</line>
<line>
3 1 8 ,9
</line>
<line>
0 ,*
</line>
<line>
3 9 ,7
</line>
<line>
0 ,5 8 3 1 2
</line>
</par><par>
<line>
SAGAC
</line>
<line>
2
</line>
<line>
2 3 0 ,7
</line>
<line>
3
</line>
<line>
5
</line>
<line>
* ,0 *
</line>
<line>
0 ,6 5 *
</line>
<line>
9 9 ,7 3
</line>
</par><par>
<line>
W**h the data presented in Table 1, w* can *ee tha* the S*GAC al**r*thm obtained the
</line>
<line>
best results concern*n* the Wloss *nd Pro*i* values. A*t*r all, this *s the object*ve of this
</line>
</par><par>
</page><line>
*ev. FSA, Ter*sina, v. 18, n. 7, art. 10, p. 160-*72, j**. **21
</line>
<line>
www4.f*anet.com.br/re*ist*
</line>
</par><page>
<par>
<line>
Hy*rid Metaheuristic Al*orith* (*agac) Used in Optimization of *acuum Cooling Treatment
</line>
<line>
**1
</line>
</par><par>
<line>
optim*zation **o*e*s, that is, to mi*imize pr*duct w*i*ht *o*s and con**quently maximi*e
</line>
<line>
p*ofit.
</line>
<line>
5 CO*CLUSIONS AND FUTURE WORK
</line>
<line>
A hy*rid *etahe*r*st*c algorithm was p*o*osed to obt*in better res**ts in op*imizing
</line>
<line>
*** vacuum cooli*g **oce** of b*occoli after har*es*, coming from *he union of the *imulated
</line>
<line>
Annealing (SA) alg**ithms a*d *he G*ne*ic Algorithm with a converge*ce acceleration
</line>
<line>
mechanism. (AGAC) *h*ch was nam*d SAGAC. In t*e proposed app*oach, SA has t**
</line>
</par><par>
<line>
function
</line>
<line>
of pro*iding the initia* po*ulat*on of the AGAC with individual* o* better quality
</line>
</par><par>
<line>
than individuals gene*ated a* random. This st*a**gy works as a
</line>
<line>
pr*-op*imiza**o*
</line>
<line>
of
</line>
<line>
t he
</line>
</par><par>
<line>
pro*ess. Upon *eceiving
</line>
<line>
t *i s
</line>
<line>
init**l pr*-o*timized popu*ati*n, A*AC raises
</line>
<line>
the quali** of
</line>
</par><par>
<line>
these individu*ls to a higher lev*l.
</line>
<line>
The results *btaine* sh*w a better pe*form*nce of the SAGAC, m*in*y when we refer
</line>
<line>
to minimizing *he prod*ct's weight loss (broccoli) and the maximizatio* of *he *rofit.
</line>
<line>
The SAGAC algorithm showed its poten*ial in opti*izing t** vacuum cooling process
</line>
</par><par>
<line>
of
</line>
<line>
*ro*coli after
</line>
<line>
har*e*ting. * st*dy of its p*ocessi*g parameters *e*ains a sug**stio* for
</line>
</par><par>
<line>
future *ork as a for* o* inves*iga*ion to improve pe*formance. A*ditionally, *he S*GAC
</line>
<line>
algorithm could be implemented to op*imi*e other actual processes in future works.
</line>
<line>
REF*RENCES
</line>
<line>
Ab*a*ia B., Mahl*o*ib H., Impr*ving respons* surface me**odology *y *sing *rtificial ne*ral
</line>
<line>
network a*d simula*ed annealing, Expert System* with Application*, Vol*me *9, Issue 3, 15
</line>
<line>
February *012, Pag*s 3*61-*46*, Elsevier, 2012.
</line>
<line>
Alibas, I., Koksa*, N., *or*ed-air, va*uum, and hydro precooli*g of *aul*f*ower
</line>
<line>
(Brassic*ol*aracea L. *ar. botr**is cv. Fre*m*nt): part I. De t*rmination of precool**g
</line>
<line>
parameter*. Food Sci. Tech n*l. 34 (4), 7*0-73*, 2014.
</line>
</par><par>
<line>
Carvalho, P.T., Clemente, *., T*e infl*enc* of the
</line>
<line>
broccol* (Bra*sicaolerace* var.it**ica)*i**
</line>
</par><par>
<line>
*eigt* on p*s*harv*st quality. Food Sc*. Tech n*l. 24 (4), 646-651, 2014.
</line>
</par><par>
<line>
Corcuff, R., Arul, J., Hamza, F., Cast*igne, *., Ma*hlouf, J., Storage
</line>
<line>
*f brocc*li flor*ts i*
</line>
</par><par>
<line>
et*anol vapor enriched *tmosp*eres. Postharvest Biol. Tech nol. 7, 219-229, *996.
</line>
<line>
Funes, E., Allouche, Y., Beltrán, G., *imén**, A., A review: artificial neural ne*works as tool
</line>
<line>
for control food industry process. J. Se*s. Technol. 5 (1), 28-*3.2015.
</line>
</par><par>
</page><line>
*ev. F*A, Ter**in* PI, v. **, n. 7, art. 10, *. 160-172, ju*. 2021
</line>
<line>
www4.fsanet.com.br/revista
</line>
</par><page>
</document><par>
<line>
M. A. C. Benvenga, I. A. Nääs
</line>
<line>
172
</line>
</par><par>
<line>
Li*den, R,Algorit**s Gen*ticos - Uma impo*tante ferramenta de inteligênci*
</line>
<line>
compu**cional,2a.e*., Bras*ort, 20**.
</line>
<line>
Sant*na, J. C. C., Araujo, S. A., Alv*s, W. A. L., Belan, P. A., *iangang, L., Jianchu, C.,
</line>
<line>
Dong-Hong, L., ***imization o* *acuum cooling treatment o* p*sthar*est broc*ol* using
</line>
<line>
response surface *ethodology combined with geneti* algorith* tech**que, Computers a*d
</line>
<line>
Electronics in Agriculture, El*evier, 2018.
</line>
<line>
*cDonald, K., Sun, D.W., Lyn*, J.G., Effect of vac*um **ol ing on the th*rmo physical
</line>
<line>
propert*es of a *ooke* beef p*oduct. J. Food Eng. 52, 167-17*, 2*02.
</line>
<line>
Zhang, Z.H., Sun, DW, Effe*t of cooling methods on the coo*in* efficienci*s and qu*lities of
</line>
<line>
cooked bro*co** and carro* sl*ces. J. Food E*g. 77, 32*-326, 2006.
</line>
</par><par>
<line>
Como Referenciar *s*e A*tigo, c*nf*rme ABNT:
</line>
<line>
BEN*ENGA, M. A. C; NÄÄS, I. A. Hy**id M*t*heuristic *lgo*ithm (Sagac) U*ed in Optimization
</line>
<line>
of *acu*m Cooling Tre*tment *f *ostharvest Broccoli. *ev. F*A, Teresina, v.18, n. 7, art. 10, p. 160-
</line>
<line>
17*, jul. 2*21.
</line>
</par><par>
<line>
*ontribu*ção dos Auto*es
</line>
<line>
M. A. C. Benveng*
</line>
<line>
I. A. *ääs
</line>
</par><par>
<line>
*) concepção * pl*n*jame*to.
</line>
<line>
X
</line>
<line>
X
</line>
</par><par>
<line>
2) análise e interpretaç*o d*s da*os.
</line>
<line>
X
</line>
<line>
X
</line>
</par><par>
<line>
*) e*aboraç*o do rascunh* ou na revi*ão críti*a *o conteúdo.
</line>
<line>
*
</line>
<line>
*
</line>
</par><par>
<line>
4) participaçã* na aprovação da ver*ão final do *anu**rito.
</line>
<line>
X
</line>
<line>
X
</line>
</par><par>
</page><line>
Rev. FSA, Teresina, v. *8, n. 7, art. 1*, *. 160-172, ju*. 2*21
</line>
<line>
*ww4.fsa*e*.com.*r/revista
</line>
</par>Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ISSN 1806-6356 (Print) and 2317-2983 (Electronic)