<document>
<page>
<par>
<line>
Centro Unv*rsitário Santo Agostinho
</line>
</par><par>
<line>
www*.fsanet.com.*r/revista
</line>
<line>
Rev. FSA, Tere*i*a, *. *8, n. 7, art. 6, p. 94-109, ju*. 2*21
</line>
<line>
*SSN Impresso: 18*6-6356 ISS* Eletr*nico: 2317-2983
</line>
<line>
http://dx.doi.org/10.12819/2021.*8.7.6
</line>
</par><par>
<line>
Sce*arios of the Degree of Centralit* a*d Density *f t*e Netw**ks of the Main B**zilian
</line>
<line>
Airp*rts Between *003 t* 2*20
</line>
<line>
Cenári*s do Grau de Ce**rali*ade e Dens*dad* das Re*e* dos Pri*cipais Aeroportos B*as*leiros
</line>
<line>
Entre 20** * 2020
</line>
</par><par>
<line>
Luiz *odrigo Bonette
</line>
<line>
*outorado *m Engenhari* de Produção pela *ni*ersidade Pauli*ta
</line>
<line>
Mestre *m E*genhari* *e Produ*ão *ela Univers*d**e de Arar*quara
</line>
<line>
E-mail: luiz.*o*ette@alun*.unip.br
</line>
<line>
Fern*nda Alves de Araúj*
</line>
<line>
Mes*re em Engenha*ia d* Pr*duçã* pela Univ*rs*d*de Paulis*a
</line>
<line>
E-m*il: fernanda.lo*istica@gmail.com
</line>
<line>
João Gilberto *endes dos Reis
</line>
<line>
D*u*o* e* En*enha*ia d* *rodução pela Uni*e*sida*e Paulista
</line>
<line>
*rofesso* *a *niversidade Paulista
</line>
<line>
E-*ail: jo*o.*eis@docen**.u*ip.b*
</line>
<line>
Paula Fe*reira da Cr** Correia
</line>
<line>
*outora*o em Engen*aria *e Produçã* pela Uni*ersid*de Paulis**
</line>
<line>
Mestra em *ngenharia de P*odu*ã* pela Universidade P*u*ista
</line>
<line>
E-m*il: paul**ecruz@*mail.com
</line>
</par><par>
<line>
Endereço: Lui* Rodri** Bonette
</line>
</par><par>
<line>
Av.
</line>
<line>
Paulista,
</line>
<line>
900
</line>
<line>-</line>
<line>
B*la
</line>
<line>
Vista,
</line>
<line>
*ão
</line>
<line>
Paulo
</line>
<line>-</line>
<line>
SP,
</line>
<line>
01310-
</line>
<line>
Editor-C*efe: Dr. *o*ny Kerley *e Alencar
</line>
</par><par>
<line>
*00. B*a*il.
</line>
<line>
R*drigues
</line>
</par><par>
<line>
Ende*eço Fernanda Alves de *raújo
</line>
</par><par>
<line>
Av.
</line>
<line>
P*uli*t*,
</line>
<line>
900
</line>
<line>-</line>
<line>
Be*a
</line>
<line>
Vista,
</line>
<line>
São
</line>
<line>
Paulo
</line>
<line>-</line>
<line>
SP,
</line>
<line>
0*310-
</line>
<line>
Artigo *ec**ido em 1*/06/202*. Últim*
</line>
<line>
v*rsão
</line>
</par><par>
<line>
*00. Brasil.
</line>
<line>
recebid* em 2*/06/2021. Aprovad* em 28/06/2021.
</line>
</par><par>
<line>
Ende*e**: Jo*o Gilbert* Mendes dos R*is
</line>
</par><par>
<line>
A*.
</line>
<line>
Paulista,
</line>
<line>
90*
</line>
<line>-</line>
<line>
Bela
</line>
<line>
Vista,
</line>
<line>
*ão
</line>
<line>
Paulo
</line>
<line>-</line>
<line>
SP,
</line>
<line>
01310-
</line>
<line>
Avaliado pe*o s*st*ma Triple Review: Desk Review *)
</line>
</par><par>
<line>
100. Br*sil.
</line>
<line>
*elo Editor-Chefe; e b) Double *lind Revie*
</line>
</par><par>
<line>
End*reço: Paul* Ferreira da Cruz Correia
</line>
<line>
(aval*ação cega **r dois avaliadores da área).
</line>
</par><par>
<line>
Av.
</line>
<line>
P*u**st*,
</line>
<line>
900
</line>
<line>-</line>
<line>
Bela
</line>
<line>
**sta,
</line>
<line>
*ão
</line>
<line>
*a**o
</line>
<line>-</line>
<line>
SP,
</line>
<line>
01310-
</line>
</par><par>
<line>
*00. Bra*il.
</line>
<line>
Revis*o: Gramatica*, N*rmativ* e de Formatação
</line>
</par><par>
</page><line>
Developm*n* A*ency: This st*dy was financed *n **r* b* *he Coordenaç*o de Aperfeiçoame*to *e Pes*oal de Ní*el
</line>
<line>
Superi*r - Brasi* (CAPES) - Finance Code 001.
</line>
</par><page>
<par>
<line>
Scenarios of th* *egree of Centra*ity and Density of the Net*o*ks of the *ain Brazi*i*n *irports
</line>
<line>
95
</line>
</par><par>
<line>
ABSTRACT
</line>
</par><par>
<line>
The ident*ficatio* o* air transport netwo*ks is re*e*ant to the economic devel*pme*t of a city
</line>
<line>
o* re*ion, throug* its passen*er dema*d*, an*, *n th*s *a**, there m*y be * d**fer*nce *e*ween
</line>
<line>
*he fo*mation of t*e** networ*s in di*ferent **r*ods and whi*h are the main actors comp*red
</line>
<line>
in a sample of seven airports. Th* aim of this study is to analy*e the degree of centrality of the
</line>
<line>
n*twork *f the seven largest Br*zilian pa*sen*er air*o*ts. Th*s sample is based on the **aly*is
</line>
<line>
of netwo*k indicators *or the collection and extraction of pa**enger data betwee* destinations
</line>
</par><par>
<line>
and ai*port o*igins by the Natio*al Civil Aviation Agency (ANAC). *he Soci*l
</line>
<line>
Ne*work
</line>
</par><par>
<line>
Analysis (SNA) meth*d was ap*lied for th* construct*on of *etwo*ks thr*ugh the application
</line>
<line>
of @ *cinet/Netdraw Vers*on *.716 software *o understand the deg*ee of centra*ity and the
</line>
<line>
den*ity of the netw*rk in the scenarios ** 2003, 2007, 201*, 2018, and 2020. *t was concluded
</line>
<line>
that t*e *onjun*t*re of the links and nod*s within t*e scenarios of the *ub-a*d-**oke airport
</line>
<line>
net*orks o* the flows *s susta*ned, to a greater and les*er *x*ent *n the netw*rk, by an airport
</line>
<line>
i* th* Braz*lian midwes*er* regi*n (Brasíl*a) a*d two other airp**ts in the **utheastern re*i*n.
</line>
<line>
For futur* con*ri**tions, the nine-mo*t* 2020 Covid-19 pandemic pe*iod was anal*zed,
</line>
<line>
bringing *esults s*ch as reduc*io*s in *he deg*ees of centra*ity an* density of the netw*rk of
</line>
<line>
*he*e se*en airports.
</line>
<line>
*eyword*. Airp*r*s. Passenger*. H*b-A*d-*poke. *NA.
</line>
<line>
RESUMO
</line>
<line>
* identifi*ação da* redes de t*ansporte aéreo é relev*nte para o d*senvolv*mento econômico
</line>
<line>
de uma **dade ou regi*o, por mei* de suas demandas de passageiros, e, ne*te caso, pod* haver
</line>
<line>
**a d*ferença entre * formaç** *essas *edes em d*ferentes período* e qua*s *ão os pr*n*ip*is
</line>
<line>
a*ores *o*parados em uma amostra de sete ae*oportos. O obje**vo deste estudo f*i analisar o
</line>
</par><par>
<line>
*rau *e cent**l*dade da mal*a dos sete *aiores aeropor*os
</line>
<line>
*rasileiros de passageiro*. Est*
</line>
</par><par>
<line>
amostr* é baseada na *nálise de i**icador*s
</line>
<line>
de rede *ara co*eta extração de dados e
</line>
<line>
de
</line>
</par><par>
<line>
passa*eiros **tre destino* e orig*n* **r*p*rtuá*i*s pela *gência Naci*nal *e A**ação Civil
</line>
</par><par>
<line>
(*NAC). O método de Análise de Redes *oc*ai* (SNA) foi aplicado
</line>
<line>
para a const*ução
</line>
<line>
de
</line>
</par><par>
<line>
rede* através da aplicação *o *of*war* @ Ucinet / Net*ra* Ver*ã* *.716 para enten*e* o grau
</line>
</par><par>
<line>
de centralida*e e densidade da rede *os *e*ários d* 200*, 2007, a
</line>
<line>
2 01*, *01*, e *020.
</line>
</par><par>
<line>
Conclu*u-*e que a conjuntura *os e*** * *ós dent*o dos cenários
</line>
<line>
das rede* hub-and-spoke
</line>
</par><par>
<line>
airport nos fluxos é sust**tada, em mai** o* menor g*au na red*, po* um a*r**orto d* r*gião
</line>
<line>
ce**ro-oeste br*sileiro (Brasília) e ou*ros dois ae**po*t*s da *egião sudeste do B*asil. Para
</line>
<line>
*ontr*buições fut**as o período *andêmico da *ovid-19 de n*ve m*se* d* 20*0 foi analisado,
</line>
</par><par>
<line>
**a*endo resultad*s **mo as re*uçõe* nos *raus de *entr**i*ade e
</line>
<line>
densi**de da r**e destes
</line>
</par><par>
<line>
sete aeropo*tos.
</line>
</par><par>
<line>
Key*or*s. Aeropor*os. Passageiros. *ub-And-Spok*. SNA.
</line>
</par><par>
</page><line>
Rev. FSA, T*r*si*a PI, *. 18, n. 7, art. *, p. 94-1*9, jul. 2021
</line>
<line>
www*.*s**et.com.b*/revista
</line>
</par><page>
<par>
<line>
L. R. Bonett*, F. A. Ara*jo, J. *. M. Reis, P. F. C. C*rreia
</line>
<line>
*6
</line>
</par><par>
<line>
* IN**ODUC*ION
</line>
</par><par>
<line>
Hub-and-spoke is a s*ste* of air transpo*t*tio* in wh**h local air*orts o**er fl**hts to
</line>
<line>
a c*n*ra* a*rport where interna*ional or long-dis**n*e fli*ht* are *va*lable (O'Kell* & Br*an,
</line>
</par><par>
<line>
*998). Ae*ial ***works im*ly the cons*lid*tion of traffic from range of diverse origins a
</line>
</par><par>
<line>
*irec*ed a to
</line>
<line>
range of diverse final *estinations at large
</line>
<line>
*entral airports (Butt*n,
</line>
<line>
2002). Hu*
</line>
</par><par>
<line>
cities have devel*pm**t advan*a*es for *ertain *ypes of e*on*m*c *ctiv*ties tha* ref*e*t two
</line>
<line>
*oints of distinc*ion that share * simi**r pro**l*. The **rst, the *o*centra*ion of large
</line>
</par><par>
<line>
pass*ng*rs a*d c*rgo f*ow, *nd the second,
</line>
<line>
th e
</line>
<line>
high degree of c*nne**i*ity with other
</line>
</par><par>
<line>
d*m*stic poin** and internation*l air networ*s (Bowen, 2000).
</line>
<line>
Ana**zing th* ne*w*rk bu*lt of th* se*e* larges* Brazilian airpor*s, based ** the
</line>
<line>
sta**stic*l reports o* p*ssenger *ovement of *he Nation*l C*vil Aviat*on Agenc* - ANAC
</line>
</par><par>
<line>
(*0*9), *t is poss*ble
</line>
<line>
to have *iffe*ences between the passenger n*twork demon*tr*tin* its
</line>
</par><par>
<line>
*ensity an* findi*g
</line>
<line>
the *easure of centrality in
</line>
<line>
periods ma*y *ifferent. The *tudy aims to
</line>
</par><par>
<line>
anal*ze the **gree *f
</line>
<line>
centrality of
</line>
<line>
*he n*twork ** the seven-passeng*r ai*ports t**ough the
</line>
</par><par>
<line>
SNA (*ocial Anal*sis Network) ne*w*rk method us*ng t*e @ **inet / Net*raw software. The
</line>
<line>
m*in actors i* the s*mu*ate* network were *app** and *raphically con*tructe*, with *irpor*s
</line>
<line>
**d cities valued for their movements data (pa*sengers) a*d links (c*nnec*ions) in th*i* flo*s
</line>
<line>
in the na*ional c*vi* avia**on m*rket.
</line>
<line>
Air tra*spor* an* *istri*u*ion in the*r c*rrent networks are undergoing profound
</line>
<line>
modi**c*tions and *h*s ada*ting to their aviat*on demands wh*n ana*y*ing **e *ifferent
</line>
<line>
annua* *ce*arios, in t**s *as*, 2*03, 2007, 2*15, 2*1*, and *020. T*e method*logy d*als
</line>
</par><par>
<line>
with passenger mo*ements
</line>
<line>
betwee* seven ai*ports (Belo Ho*izonte - Co*fins, Bra*ília,
</line>
</par><par>
<line>
Ca**inas, São Paulo - G*aru*hos, São Pau*o - Congonhas, Rio d* Janeiro - Gal*ão, Rio
</line>
<line>
**
</line>
</par><par>
<line>
Janeiro - Santos Dumont) using the concept of centrality **asur* in n*two*ks of a degree of
</line>
<line>
density (conn*ctivi*y) of the network.
</line>
<line>
The discussion and r*sul*s p*opo*e th* visuali*ation and compar**on of *** airpor*
</line>
</par><par>
<line>
network prop**ed *y scenarios
</line>
<line>
*nd historic*l antecedents b*fore the year of *ata collec*ion.
</line>
</par><par>
<line>
T*e conclusion o*fers the t*end* and possibi*ities of ho* this network ca* be confi*ure* in its
</line>
<line>
links by facto*s such a* co**en*ration *nd *onnectivity *f th* actors, starting fr** the aviation
</line>
<line>
data of *as*engers of origin and des*inati*n.
</line>
</par><par>
</page><line>
Rev. FSA, *er*sina, v. 18, n. 7, art. *, p. 9*-109, jul. 2021
</line>
<line>
www4.fsanet.com.br/re*ista
</line>
</par><page>
<par>
<line>
S*ena*i*s of t** Degre* o* Ce*trality and **nsity of the Networks *f t*e Main Brazilian Airp*r*s
</line>
<line>
97
</line>
</par><par>
<line>
2 THEORETICAL REF**E*C*
</line>
</par><par>
<line>
2.1 Hub-and-**oke
</line>
</par><par>
<line>
Ce*tral airports *on*ider ind*rect conne*tion* through their
</line>
<line>
hub as an essential
</line>
</par><par>
<line>
strategy (Veldhuis & Kr*es, *002). T*ere is *h* problem *f l*cating the arc of t*e hub, wh**e
</line>
<line>
a certain numbe* o* arcs a*e located in t*e hub (with r*duced *ranspor* cost per unit) to sa*isf*
</line>
</par><par>
<line>
a *em*nd
</line>
<line>
for trave* b*tween th* specified origin-des*ination pairs (Campbell *t
</line>
<line>
a*., 200*).
</line>
</par><par>
<line>
Th* hub is a mea*ure
</line>
<line>
of cen*rali*y and nodes are the lin*s in *
</line>
<line>
hub-and-spoke
</line>
<line>
netwo*k
</line>
</par><par>
<line>
(B*tton, 2002).
</line>
</par><par>
<line>
*an*c (2005) and Ball et al. (2006) po*nt out *hat the vulnerability of the hub-an*-
</line>
<line>
spoke system u*e* se*eral mitigation *tr*tegies pr*po*ed to postpone, *ance* *r **rward the
</line>
<line>
air transport sys*em. There are thr*e separate components for each *ub-*nd-spoke *low, the
</line>
<line>
collection (source node t* hub nod*), tra*sfer (hu* *ode *o hub nod*), a*d distr*bu*ion (*ub
</line>
<line>
node to d*stinat*o* no*e) (Ca*pbell et al., 2007). H*b network analy*is focuses on
</line>
</par><par>
<line>
combination* o* mod*ls asso*iat*ng ce*tral hub* and econ*m*c objectives,
</line>
<line>
central hubs,
</line>
<line>
and
</line>
</par><par>
<line>
se*vi*e *eve*s (Campbell, 1994).
</line>
</par><par>
<line>
*he hub hierar*hy *u*t b* ana*yze* *y t*e flight f*equ*ncy, hub accessibil*ty,
</line>
<line>
and
</line>
</par><par>
<line>
passenger variab**s to
</line>
<line>
help
</line>
<line>
a*d define the la*ers ** *his hub
</line>
<line>
h*er*rchy, influencing t*e
</line>
</par><par>
<line>
conne*tivity ind*x
</line>
<line>
of *he e*ti*e hub-an*-spok* network (Ryerson
</line>
<line>
& K*m, 2013). Cargo
</line>
</par><par>
<line>
transpo*tation *s
</line>
<line>
more *omplex than passenge*
</line>
<line>
transportation because
</line>
<line>
the *ormer inv*lves
</line>
</par><par>
<line>
more actors w*th processes. *her*for*, it i* more sophi**icated and com*ining volumes, with
</line>
<line>
vari*d priority **rvi*es, with s*rategies f*r i*tegrat*ng and c*nsolidating variou* itineraries in
</line>
<line>
* netwo*k ** tr*nsp*rtat**n (Feng et al., 2015).
</line>
</par><par>
<line>
T*e hu* *ccessibility
</line>
<line>
criterion
</line>
<line>
explores th* position of the sim*lated netwo*ks
</line>
</par><par>
<line>
without *ncluding sma*l
</line>
<line>
*r regiona* airp**ts and *h*ir imp*cts in terms of economic *c*i****
</line>
</par><par>
<line>
and c*mpetitive pressur* on the h*b-a*d-spoke network, the*efor*, i* is necessary to analyze
</line>
<line>
t*e h*b behavi*r (R**ond* et al., 2012).
</line>
<line>
The connectiv*ty po*e*tial of airports, anal*zed by *onne*tivity inde*e* in **eir
</line>
<line>
r*gio*s, is influenced by the demand and plays * key r*le in determi*ing th* role of airpor** in
</line>
<line>
*ub-and-spoke ne*works (Rodrígue*-Deníz et al., 2013). The hub-and-s*oke n**work uses the
</line>
<line>
concept of "subs*i*ute *ub" or "b*ckup hub" within the desi*n of the hu*-and-spoke network
</line>
</par><par>
<line>
f** roundtrip *lows parallel to the central hub flow (*u et al.,
</line>
<line>
2015). Mohri
</line>
<line>
et al. (2018)
</line>
</par><par>
</page><line>
*ev. FSA, Teresina PI, v. 18, n. 7, *rt. 6, p. 94-109, jul. 2021
</line>
<line>
www*.fsane*.com.br/revist*
</line>
</par><page>
<par>
<line>
L. *. B***tte, *. A. Ar*újo, J. G. M. R*is, P. F. C. Correia
</line>
<line>
98
</line>
</par><par>
<line>
consider the possibility of a di*ec* conflict between no-hu*s, t*gether with the problem of
</line>
<line>
de**rminin* *** c*pacit* o* the *odes of a hub w**h a multip*e netwo*k alloc*ti*n model.
</line>
<line>
All pos*ible allocation strate*ies, su*h a* the extension fo* each all*c*tion s*rategy,
</line>
</par><par>
<line>
make it p*ssible
</line>
<line>
to model cases in which direct *onne*tion* betwe*n no-*ub nodes are
</line>
</par><par>
<line>
*llowed, i* th*s case, testing and ev*luating the performance *f th* *roposed mod*ls
</line>
<line>
(T*herk*an* & A*u*ur, 2*1*).
</line>
<line>
2.2 Hub-and-spo*e network com**sitio*
</line>
<line>
Rou** systems, by t*eir natur* and geographic *cope, ar* based *n route level data,
</line>
<line>
relating *i**ines and a*rport* to route *truc*u*e, costs, and carrier performa*ce (***ia et al.,
</line>
<line>
1998). Six fact*rs shape the design o* i*tegrati*g netwo*ks, suc* a* *he *iberali*ation o* the
</line>
</par><par>
<line>
airline i*dust**,
</line>
<line>
*he cent*ality of the market
</line>
<line>
*nd inter*ediation, the gr*und tr*n**ortation
</line>
</par><par>
<line>
networ*s, comp*t*tion among comp*ementa*y aerial n*tworks, the growth *f transport
</line>
</par><par>
<line>
networks, and th* characteristics
</line>
<line>
of aircra*t (Bowen, 2012). The *ub-and-s*oke net*ork
</line>
<line>
*s
</line>
</par><par>
<line>
formed in bui*ding *l*cks of th* quality approach by w*i*hting c*nnec*io* levels, such as: th*
</line>
</par><par>
<line>
connection identi*icati*n
</line>
<line>
level, t*e c*nnection quality leve* and the d*stin*t*on level
</line>
</par><par>
<line>
(*urgho*wt & W*t, 2005; Allroggen et al., 2*1*).
</line>
<line>
Ta*le 1 - Conge*tion *onsid*rations
</line>
<line>
Author Factors t*at *ffect Hub co*g*stio*
</line>
</par><par>
</par>
<par>
</page><line>
For the app*ic*bility of this rese*rch, the Soci** Network *n*lysis (SNA) m*thod
</line>
<line>
**s used through the te*h*iques of centrality and d*nsi*y measurements with the @
</line>
<line>
Uc*net/N*tdraw s*ftware (*orgatti, 2002; Borgatti et al., 2002).
</line>
<line>
Rev. FSA, Teresina, v. 18, n. 7, art. 6, p. 94-109, ju*. 2021 www4.fsanet.co*.br/revi*ta
</line>
</par><page>
<par>
<line>
*cenar*o* *f t*e De*ree of Centrality and Density of t*e Net*orks of the *ain *ra*i*ian Airports
</line>
<line>
99
</line>
</par><par>
<line>
We sought to e*plo*e *he *ata f**m A*AC (2019) stati*tica* *eports *ith the a*nu*l
</line>
<line>
data*ases in the periods of 2*0*, *007, 2015, 2018, and *ine *onths of th* COVID19
</line>
<line>
pandemic period *n 2*20, *esulting in the sample *f seven ai*ports anal*zed (Belo Horizonte -
</line>
<line>
Confins, Bra*ília, *ampin*s, Sã* Paulo - Guarul**s, São Pau*o - Co*gonhas, Rio de J*neiro -
</line>
<line>
Galeão, Ri* de Janeiro - Sa*tos Dum*nt).
</line>
<line>
The me**odologic*l process had the fol*owin* st*g*s: (1) th* tr*atment of data by
</line>
<line>
e*ectron** spre*dsheet* *nd the construc*io* of t*e r*lati*nal *atr*x of numer*cal *alances and
</line>
</par><par>
<line>
0; 1 *er
</line>
<line>
y*ar, (2) the applic*ti*n of the SNA meth*d with
</line>
<line>
the *eneration of *h* graph
</line>
<line>
and
</line>
</par><par>
<line>
diag*am and (3) the simulat*ons of *he measurement *ables of the degree o* *entral*ty an*
</line>
</par><par>
<line>
*ensity to a*sess
</line>
<line>
*he b*havio* of the SNA i* thi* net*ork (Hanneman, 2001; Ha*n*man &
</line>
</par><par>
<line>
*idd**, 2005; *co*t, 20*0; Wasserma* & Fau*t, 1994).
</line>
<line>
**ble 2 - T*e coding of a*rport *cron*m* *y the Internatio*** Civi* Aviation
</line>
<line>
**ganizatio*. (ICAO)
</line>
</par><par>
<line>
Nº
</line>
<line>
ICAO
</line>
<line>
Airpor*
</line>
<line>
Local*za*ã*
</line>
</par><par>
<line>
1
</line>
<line>
SBBR
</line>
<line>
I*t**national *irport of *rasília (Pr*sidente Juscelino Kubitsch*k)
</line>
<line>
Bras*lia
</line>
</par><par>
<line>
2
</line>
<line>
SBCF
</line>
<line>
**terna*io*al Airport of Belo H*rizo*te-Co*fins (Tancred* Ne*es)
</line>
<line>
Confins
</line>
<line>
Rio de
</line>
</par><par>
<line>
3
</line>
<line>
*BGL
</line>
<line>
Internationa* *irport of Rio de Jan*iro (Tom J*bim/Ae*oporto do *aleão)
</line>
<line>
Janeiro
</line>
</par><par>
<line>
4
</line>
<line>
*BGR
</line>
<line>
Internatio**l Airport of Sã* Paul*/G**rul*o* (A**ré F*anc* **ntoro)
</line>
<line>
Guarulhos
</line>
</par><par>
<line>
*
</line>
<line>
SBKP
</line>
<line>
International Air**rt of Campinas (V*racopos-Camp*nas)
</line>
<line>
Campi*as
</line>
<line>
Rio d*
</line>
</par><par>
<line>
6
</line>
<line>
SBRJ
</line>
<line>
Inter*ational Airport of Rio de *aneiro (Santo* *umont)
</line>
<line>
Janeiro
</line>
</par><par>
<line>
7
</line>
<line>
SBSP
</line>
<line>
In*ernational Airport of Sã* Pau**/Congon*as (Deputado Freitas *obre)
</line>
<line>
São Paulo
</line>
</par><par>
<line>
Source: IC*O (2020)
</line>
<line>
4 RESULT A*D DI*CUSSIO*
</line>
<line>
The networks of *h* *even airpor*s analyzed by the SNA m*thod in the periods of
</line>
<line>
2003, 2007, 2015, 2018, and 2020 *r* of the types of c*aracterized **t*or*s and **assified as
</line>
<line>
distribu*ed *nd symmetrical, being from *he di*ection of no*es to th* b*directional links
</line>
</par><par>
<line>
structure* in *elational ma*ri*. I* takes int* account the f**lowin* *i*torical back*round a
</line>
<line>
necessary for ext*a*tin* ANAC's **atistical reports between the *ear* 2003, 2*07, 20*5, 2018,
</line>
<line>
**d *020.
</line>
</par><par>
</page><line>
Rev. FSA, Teresina PI, v. 18, n. 7, art. 6, p. 94-1*9, *ul. 2021
</line>
<line>
ww*4.fsan*t.*om.br/rev*s*a
</line>
</par><page>
<par>
<line>
L. R. Bonet*e, F. A. Araújo, J. *. M. Reis, P. F. C. *orreia
</line>
<line>
10*
</line>
</par><par>
<line>
Table 3 - The historica* bac****und of th* periods rela*ed t* th* analysis of the five
</line>
<line>
n*twork*.
</line>
<line>
*ear Historical background
</line>
</par><par>
</par>
<par>
<line>
Source: Authors (20*0).
</line>
<line>
The analysis criteria of the SN* m*thod refe* to the foll*wing aspects f*r the next
</line>
<line>
fi**res 1, 2, 3, 4, and 5:
</line>
</par><par>
<line>
</line>
<line>
Ou*degree (nOutdeg): O*tp*t deg*ee (origin/destination).
</line>
</par><par>
<line>
</line>
<line>
Indegr*e (*Indeg): Input degree (destination/origi*).
</line>
</par><par>
<line>
</line>
<line>
Centr*lization: It is * s**cial conditio* in *hich a* *c*or plays a *entral r*le by being
</line>
<line>
*onnect** to a*l *odes, which ne*d to *as* through the centra* *ode to connect, whi*h
</line>
<line>
can be Centrali*ation Outdeg*ee (Out-C*) or *entralizat*on In*egree (In- Ce).
</line>
</par><par>
<line>
</line>
<line>
Densi*y: S*ows whether the network has h*gh or lo* connectivity between the number
</line>
<line>
of existing *el*ti*nships with the possible relationships.
</line>
</par><par>
<line>
</line>
<line>
Kc*re: Possibi*ity of s**networks supported by act*rs *ho mediate the*e *onne*ti*ns.
</line>
<line>
Table 4 - *he 2003 *irport datab*s*
</line>
</par><par>
<line>
ICAO
</line>
<line>
SBBR
</line>
<line>
**CF
</line>
<line>
SB*L
</line>
<line>
SBGR
</line>
<line>
SBKP
</line>
<line>
*BRJ
</line>
<line>
SBSP
</line>
</par><par>
<line>
SB*R
</line>
<line>
*
</line>
<line>
5959
</line>
<line>
9*301
</line>
<line>
*16221
</line>
<line>
60770
</line>
<line>
3441*1
</line>
<line>
646175
</line>
</par><par>
<line>
SB*F
</line>
<line>
2896
</line>
<line>
0
</line>
<line>
11
</line>
<line>
10*484
</line>
<line>
*10
</line>
<line>
890
</line>
<line>
8392
</line>
</par><par>
<line>
SBGL
</line>
<line>
3164
</line>
<line>
0
</line>
<line>
0
</line>
<line>
278748
</line>
<line>
7043
</line>
<line>
0
</line>
<line>
7119*
</line>
</par><par>
<line>
SBG*
</line>
<line>
108674
</line>
<line>
90488
</line>
<line>
273296
</line>
<line>
0
</line>
<line>
4617
</line>
<line>
1491
</line>
<line>
138
</line>
</par><par>
<line>
SBKP
</line>
<line>
6120*
</line>
<line>
331
</line>
<line>
5767
</line>
<line>
7*8*
</line>
<line>
0
</line>
<line>
80400
</line>
<line>
8*1
</line>
</par><par>
<line>
*BRJ
</line>
<line>
3491*2
</line>
<line>
1245
</line>
<line>
37
</line>
<line>
3390
</line>
<line>
*0142
</line>
<line>
0
</line>
<line>
1521**6
</line>
</par><par>
<line>
SBSP
</line>
<line>
65*7*3
</line>
<line>
335*
</line>
<line>
72922
</line>
<line>
507
</line>
<line>
145*
</line>
<line>
1556832
</line>
<line>
0
</line>
</par><par>
<line>
Sou*ce: Autho*s (2020).
</line>
</par><par>
</page><line>
Rev. FSA, Teresina, v. 18, n. *, art. 6, p. 94-109, jul. 20*1
</line>
<line>
ww*4.f*anet.com.br/revista
</line>
</par><page>
<par>
<line>
S*enario* of *he *eg*ee of Centrality and Density *f *he *etworks *f the Main Brazilian Ai*por*s
</line>
<line>
10*
</line>
</par><par>
<line>
F*gure 1 - The net*or* scenari* in 2003 **ter the t*i*d phase of th* deregulation plan
</line>
<line>
fo* *he Brazilia* airline indus*ry in 2*02
</line>
</par><par>
<line>
S*urce: Authors (2020).
</line>
<line>
The netw*r* simul*tio* revealed the f*llo*ing behavior *f the s**en a*r***ts fo* the
</line>
<line>
*0*3 sce*ario: SBSP airport* have 2*.50%, and SBRJ has 24.10% of nOutdeg, whereas in
</line>
<line>
nIn*eg SB*P h*s 24.10% and SBRJ h*s 21.20 % d*monstr*tin* th*t they are dominant
</line>
</par><par>
<line>
a*rport* in this network and
</line>
<line>
2003's scenario. Taki*g into account that SBBR is an
</line>
</par><par>
<line>
in*erme**ary in the dominance of origins *nd destinations with 13.60% nOutdeg and 12.60%
</line>
<line>
nIndeg. T*e other four ai*ports *ave *ower **ad*s in **e analys*s scale, su*h as SBGR
</line>
<line>
(nOutdeg of 5.10% and nIndeg of 5.40%), SBGL (nOutdeg of 3.9*% and nIndeg of *.*0%),
</line>
</par><par>
<line>
SBK* (nOutdeg of 1.70% *nd nIndeg of 1.70%); SBCF (nOutdeg of 1.2*% and nI**eg of
</line>
</par><par>
<line>
1.10%). On *he ce*trali**tion *egree as a basis on t*e central axi* of the network, 16.75% of
</line>
<line>
Out-Ce an* **-Ce were 16.26%.
</line>
<line>
**garding the network Densi*y, *here i* a 95.20% de*re* of connections to the li*ks
</line>
<line>
of all possible interactions, d*monstrat*ng hi** network connec*ivity in 2003.
</line>
<line>
Table 5 - The 2007 air*ort databa*e
</line>
</par><par>
<line>
ICAO
</line>
<line>
SBBR
</line>
<line>
SBCF
</line>
<line>
SBG*
</line>
<line>
SBGR
</line>
<line>
SBKP
</line>
<line>
SBRJ
</line>
<line>
S*SP
</line>
</par><par>
<line>
**BR
</line>
<line>
0
</line>
<line>
291331
</line>
<line>
605*34
</line>
<line>
276826
</line>
<line>
101936
</line>
<line>
0
</line>
<line>
680*71
</line>
</par><par>
<line>
SBC*
</line>
<line>
3099*1
</line>
<line>
0
</line>
<line>
373*97
</line>
<line>
271392
</line>
<line>
86928
</line>
<line>
2
</line>
<line>
507016
</line>
</par><par>
<line>
*B*L
</line>
<line>
602084
</line>
<line>
373906
</line>
<line>
0
</line>
<line>
4294*6
</line>
<line>
133151
</line>
<line>
0
</line>
<line>
286567
</line>
</par><par>
<line>
SBGR
</line>
<line>
291963
</line>
<line>
2*09*3
</line>
<line>
410552
</line>
<line>
0
</line>
<line>
37*0
</line>
<line>
5439
</line>
<line>
2*
</line>
</par><par>
<line>
SBKP
</line>
<line>
109012
</line>
<line>
78272
</line>
<line>
14*90*
</line>
<line>
*403
</line>
<line>
0
</line>
<line>
0
</line>
<line>
336
</line>
</par><par>
<line>
*BR*
</line>
<line>
0
</line>
<line>
0
</line>
<line>
4
</line>
<line>
23892
</line>
<line>
1*69
</line>
<line>
0
</line>
<line>
15*9662
</line>
</par><par>
<line>
SBSP
</line>
<line>
702490
</line>
<line>
558896
</line>
<line>
32*7*7
</line>
<line>
5*8
</line>
<line>
1456
</line>
<line>
*57*412
</line>
<line>
0
</line>
</par><par>
<line>
Source: *uthors (2020).
</line>
</par><par>
</page><line>
Rev. FS*, *ere*i*a PI, v. 18, n. 7, a*t. 6, p. *4-109, jul. 202*
</line>
<line>
www4.fsanet.com.br/rev*sta
</line>
</par><page>
<par>
<line>
*. R. Bonette, F. A. A*aújo, J. *. M. *eis, P. F. C. Correia
</line>
<line>
102
</line>
</par><par>
<line>
Fi*ure * - The network scenario in 2007, a*ter t*e A*r Blacko*t phenomeno*, in 2006
</line>
</par><par>
<line>
Source: *ut*ors (*020).
</line>
<line>
The net*or* s*mula*ion revealed the following b*ha*ior *f the *e*en airp*rts for the
</line>
<line>
2*07 scenar*o: the SBS* a*rport had 3*.*0% nOutdeg, whil* in nIndeg SBSP it ha* 31.10%
</line>
<line>
demon*tra**ng that it was a dominant a*rport in **is networ* a*d 2*07's sce*a*io. T*king into
</line>
<line>
accou*t a group of four intermediate airport* in d*minance of origins and ***tin*tion*,
</line>
<line>
namely SBBR (nOu*d*g o* 20.70% and nIndeg of 21.30%), SBGL (nOutdeg of 19.30% an*
</line>
</par><par>
<line>
n*ndeg of 16.60%), SBRJ (nOutdeg
</line>
<line>
of
</line>
<line>
*6.80% and nInd*g of 1*.70%), S*CF (nOutdeg of
</line>
</par><par>
<line>
16.30% and nIn*eg of 1*.30%). Th* other tw* airpo*ts have low*r gr**es in *he anal*s*s
</line>
<line>
s*a*e, such *s SBG* (nOut*eg of 10.01% and nIndeg of **.60%), SBK* (n*utdeg of 3.50%
</line>
<line>
a*d nIndeg *f 3.50%). Regard*ng the degr*e of centralization as a ba*is in th* cen*ral axis *f
</line>
</par><par>
<line>
the n*tw*rk, there w*s 19.02% of Out-Ce a*d In-Ce 17.48%, which incr*ased *ompare* to
</line>
</par><par>
<line>
2003's scenar*o.
</line>
</par><par>
<line>
Regarding the network D*nsity, 8*.*0% of c*nne*tions were made t* *he links of all
</line>
<line>
possible intera*tions, *h*wing high network conne**ivity in 2007. *owever, there was a drop
</line>
<line>
compared to 2003's sc*nario.
</line>
<line>
Tabl* * - The 2015 airpo*t d**abase
</line>
</par><par>
<line>
ICAO
</line>
<line>
SBBR
</line>
<line>
S*CF
</line>
<line>
SBGL
</line>
<line>
SBGR
</line>
<line>
SB*P
</line>
<line>
*BR*
</line>
<line>
SB**
</line>
</par><par>
<line>
SB*R
</line>
<line>
0
</line>
<line>
18*01
</line>
<line>
3*987*
</line>
<line>
622498
</line>
<line>
*8251
</line>
<line>
**0870
</line>
<line>
1140*8*
</line>
</par><par>
<line>
SB*F
</line>
<line>
424812
</line>
<line>
0
</line>
<line>
2065*3
</line>
<line>
4*627*
</line>
<line>
45947
</line>
<line>
355085
</line>
<line>
*06117
</line>
</par><par>
<line>
SBGL
</line>
<line>
362908
</line>
<line>
187245
</line>
<line>
*
</line>
<line>
720229
</line>
<line>
1559*1
</line>
<line>
0
</line>
<line>
464*08
</line>
</par><par>
<line>
SBGR
</line>
<line>
5978*2
</line>
<line>
*01220
</line>
<line>
6*9905
</line>
<line>
0
</line>
<line>
28
</line>
<line>
321016
</line>
<line>
0
</line>
</par><par>
<line>
S*K*
</line>
<line>
280004
</line>
<line>
47124
</line>
<line>
140636
</line>
<line>
*1*4
</line>
<line>
0
</line>
<line>
1661*0
</line>
<line>
122
</line>
</par><par>
</page><line>
Rev. F*A, Teresin*, v. 18, n. *, *rt. 6, *. 94-*09, j*l. **21
</line>
<line>
www4.fsanet.com.*r/revista
</line>
</par><page>
<par>
<line>
Scenari*s of the Degre* of Cent*ality and D**sity of the Networks of the *ain B*azil*an Air*orts
</line>
<line>
*03
</line>
</par><par>
<line>
SBRJ
</line>
<line>
641741
</line>
<line>
3564*3
</line>
<line>
*73
</line>
<line>
342039
</line>
<line>
171**6
</line>
<line>
0
</line>
<line>
2067869
</line>
</par><par>
<line>
*BS*
</line>
<line>
1139621
</line>
<line>
7989*5
</line>
<line>
50*2*0
</line>
<line>
12**
</line>
<line>
129
</line>
<line>
20*2786
</line>
<line>
0
</line>
</par><par>
<line>
Source: Authors (2020).
</line>
<line>
Figur* 3 - The 2015 net*ork sc*n*r*o a year after th* pol**ic*l crisis in 2014
</line>
</par><par>
<line>
Source: Authors (2*20).
</line>
<line>
The network si*ulation reveal** the fo*lowing beha*io* of the seven ai*port* for the
</line>
<line>
*015 scenario. The *BS* airport had 36.*0% nOu**eg, w*ereas in *Indeg, SBS* it ha*
</line>
<line>
*6.10% *emonstrating t*at it was a domi**nt airport *n this network and 2015's scena*io.
</line>
</par><par>
<line>
Tak*ng *nto a*count a gro*p
</line>
<line>
of *ive interme*iate airpor*s in dominance
</line>
<line>
of o*igins an*
</line>
</par><par>
<line>
desti*at**ns, being SBRJ (nOu*de* *f 28.9*% and nIndeg of 2*.*0%), SBBR (nOutde* of
</line>
</par><par>
<line>
22.80% and
</line>
<line>
nIndeg
</line>
<line>
of 2*.80%), SBC* (nOutdeg *f 18.60% and nI*deg of 15.4*%), SBGR
</line>
</par><par>
<line>
(nOut*eg of 17.10% an* nInd*g o* 17.40%); *BGL (nOu*deg ** 15.2*% a*d n*ndeg of
</line>
</par><par>
<line>
15.*0%). On*y one airport *as a lower grade on the analysis scale, bei*g SBK* (nOutdeg of
</line>
<line>
5.10% and nIndeg of 3.2*%).
</line>
<line>
Reg***ing the degre* of centralization as a base in the central axis of the networ*,
</line>
</par><par>
<line>
there was 18.*0% of O*t-Ce a*d *n-C* 18.13%,
</line>
<line>
which inc*eased comp*red to **e 2003'*
</line>
</par><par>
<line>
scena*io.
</line>
</par><par>
<line>
Re*arding the network Densit*, the d*gree of 9*.*0% of connections to th* link* of
</line>
<line>
all poss*bl* interactions was dem*nstrated, sho*ing *igh n*twork connectivi*y *n 2007. This
</line>
<line>
value of th* netw*rk Density r*turns to leve** close to the 2003 scenario.
</line>
</par><par>
</page><line>
**v. FS*, Teresina P*, v. 18, *. 7, art. 6, p. 9*-109, jul. 202*
</line>
<line>
www4.fsanet.co*.b*/revist*
</line>
</par><page>
<par>
<line>
L. R. *onette, F. A. Araú*o, J. G. *. Re*s, *. F. C. *orreia
</line>
<line>
104
</line>
</par><par>
<line>
*able 7 - The *01* air*ort da*ab*s*
</line>
</par><par>
<line>
ICAO
</line>
<line>
SBBR
</line>
<line>
SBCF
</line>
<line>
SBGL
</line>
<line>
SBGR
</line>
<line>
SBKP
</line>
<line>
SBRJ
</line>
<line>
SBS*
</line>
</par><par>
<line>
SB**
</line>
<line>
0
</line>
<line>
43*5*1
</line>
<line>
361096
</line>
<line>
718580
</line>
<line>
2*8645
</line>
<line>
6071*8
</line>
<line>
10525*1
</line>
</par><par>
<line>
SBCF
</line>
<line>
436596
</line>
<line>
0
</line>
<line>
182783
</line>
<line>
835968
</line>
<line>
299507
</line>
<line>
397770
</line>
<line>
9*6480
</line>
</par><par>
<line>
SBGL
</line>
<line>
365028
</line>
<line>
17*253
</line>
<line>
0
</line>
<line>
675006
</line>
<line>
19207*
</line>
<line>
0
</line>
<line>
403794
</line>
</par><par>
<line>
SB*R
</line>
<line>
*205*2
</line>
<line>
*21393
</line>
<line>
671816
</line>
<line>
0
</line>
<line>
1**
</line>
<line>
352*74
</line>
<line>
*
</line>
</par><par>
<line>
SBK*
</line>
<line>
282078
</line>
<line>
30415*
</line>
<line>
192*98
</line>
<line>
433
</line>
<line>
0
</line>
<line>
**9917
</line>
<line>
84
</line>
</par><par>
<line>
**R*
</line>
<line>
569450
</line>
<line>
406777
</line>
<line>
360
</line>
<line>
362525
</line>
<line>
250901
</line>
<line>
0
</line>
<line>
2164599
</line>
</par><par>
<line>
SBSP
</line>
<line>
10651**
</line>
<line>
894008
</line>
<line>
402*31
</line>
<line>
10*1
</line>
<line>
425
</line>
<line>
21*7752
</line>
<line>
0
</line>
</par><par>
<line>
Source: A*thors (202*).
</line>
<line>
Fi*ure * - *he 2018 n*twork sc**ario with Economic Recessio* and Elections
</line>
</par><par>
<line>
Sou*ce: Authors (2020).
</line>
<line>
The n*two*k *imulati*n revealed the following beha**o* of the *even **rports fo* the
</line>
</par><par>
<line>
2*18 scenario. The ***P a*rport h*d 3*.70% of
</line>
<line>
n*utdeg, whereas, *n nIn**g, SBSP ha*
</line>
</par><par>
<line>
3 4 .9 0 %
</line>
<line>
demonstr*tin* *hat *t *as a *ominant airport in this network a*d 20*8's *ce*ario.
</line>
</par><par>
<line>
Ta**n* *n*o account a group *f four intermedi*t* **r*o*ts in do*inance *f origins and
</line>
</par><par>
<line>
desti*ations, being *BR* (nOutdeg of 28.90% and nIndeg of 28.9*%), SBBR (nOutdeg
</line>
<line>
of
</line>
</par><par>
<line>
26.70% *nd nIndeg of 26.5*%), S*CF (*Outdeg of 23.6*%
</line>
<line>
and nIndeg of 23.40%), *BGR
</line>
</par><par>
</page><line>
(nOutdeg *f 19.80% *nd nIndeg ** 20.00%). The other *w* airp*rts *ave lower d**r*es in the
</line>
<line>
ana*ysis scale, *uch *s *BG* (nOutdeg o* *3.90% and *Indeg of *3.9*%), SBKP (nOutdeg *f
</line>
<line>
7.90% and *Ind*g of *.90%).
</line>
<line>
Regar*ing the degree of central*zation as a *asis in the ce*tr*l axis o* the network,
</line>
<line>
th*re was *4.60% of *ut-*e a*d In-Ce *4.70%. A dec**ase if co*pared to the *cenarios of
</line>
<line>
2003, 2007, an* 20*5.
</line>
<line>
Rev. FSA, *eresi*a, v. 18, n. *, art. *, p. 94-109, ju*. 202* www4.fsane*.com.*r/rev*s*a
</line>
</par><page>
<par>
<line>
Sc*n**io* of th* D**ree *f Central**y a*d Density of the Netw*r*s of the M**n Braz*lian A**ports
</line>
<line>
105
</line>
</par><par>
<line>
Concernin* the networ* Density, th* degree of 95.20% o* con**ctions to the links of
</line>
<line>
all possible i*te**ctions was demo*strat*ng high n*twork conne*tivity in 2018.
</line>
<line>
When simul**i*g Kcore in *003, 2007, 2015, *nd 2018 scenar*os, no s*bnet creation
</line>
<line>
was pr*venOn t*e *the* hand, a direct connectio* was *oint*d out to t*e 7 ai*por*s wit*out
</line>
<line>
intermediar*es in their rel*tion* of origins an* d*sti*ations.
</line>
<line>
4.1 Con*ri*utions to the Pa*demic **r**d (Covid-19)
</line>
<line>
This subs*ction was created *ue to *he re*evance of the pandemic *erio*, in this part
</line>
<line>
of the rese*rch, the period of * m*nths of 202* was *pproa*hed *n contra*t to the pr*viously
</line>
<line>
analyzed *eriods of 2003, 2007, 2015, *nd 20*8 scenarios that *ere collected in 12 m*nths.
</line>
</par><par>
<line>
Due to t*e *ovid-19 *ande*ic and
</line>
<line>
it* impac*s on the airpo*t secto*, the urge*cy of the
</line>
</par><par>
<line>
contribu*ions *akes t*e research to be a*proached in th** context, of the 202* scenario.
</line>
<line>
Table 8 - The 20*0 air*ort *atabase
</line>
</par><par>
<line>
ICAO
</line>
<line>
SBBR
</line>
<line>
SBCF
</line>
<line>
SBGL
</line>
<line>
SBGR
</line>
<line>
SBKP
</line>
<line>
SBRJ
</line>
<line>
SBSP
</line>
</par><par>
<line>
SBBR
</line>
<line>
0
</line>
<line>
126981
</line>
<line>
87464
</line>
<line>
*47468
</line>
<line>
1*4617
</line>
<line>
215*3*
</line>
<line>
225301
</line>
</par><par>
<line>
SBCF
</line>
<line>
124839
</line>
<line>
0
</line>
<line>
380*9
</line>
<line>
2*0807
</line>
<line>
13*0771
</line>
<line>
11*541
</line>
<line>
22*8*6
</line>
</par><par>
<line>
SBGL
</line>
<line>
9**73
</line>
<line>
41252
</line>
<line>
0
</line>
<line>
193*31
</line>
<line>
52939
</line>
<line>
0
</line>
<line>
*0*08
</line>
</par><par>
<line>
SBGR
</line>
<line>
2*0046
</line>
<line>
231662
</line>
<line>
18*312
</line>
<line>
0
</line>
<line>
0
</line>
<line>
18042
</line>
<line>
0
</line>
</par><par>
<line>
SBKP
</line>
<line>
1522**
</line>
<line>
14*44*
</line>
<line>
47858
</line>
<line>
10
</line>
<line>
0
</line>
<line>
1256**
</line>
<line>
32
</line>
</par><par>
<line>
SBRJ
</line>
<line>
239721
</line>
<line>
*16521
</line>
<line>
2*2
</line>
<line>
19*725
</line>
<line>
132*54
</line>
<line>
0
</line>
<line>
550324
</line>
</par><par>
<line>
SBSP
</line>
<line>
221451
</line>
<line>
22*600
</line>
<line>
*0753
</line>
<line>
*3*
</line>
<line>
0
</line>
<line>
511*4*
</line>
<line>
0
</line>
</par><par>
<line>
S*urce: Authors (20*0).
</line>
<line>
Figure 5 - The 2020\s netwo** sc*nario dur*ng a pe*iod *f 9 months of th* Covid-*9
</line>
<line>
Pande*ic
</line>
</par><par>
<line>
S*urce: *uthors (2020).
</line>
</par><par>
</page><line>
*ev. *SA, Teresi*a P*, v. 18, n. 7, ar*. 6, p. 94-109, *ul. 202*
</line>
<line>
www*.fsanet.com.b*/rev*sta
</line>
</par><page>
<par>
<line>
L. *. B*nette, F. A. Araújo, J. G. M. Reis, P. F. C. Cor*eia
</line>
<line>
106
</line>
</par><par>
<line>
The network si*ula*ion revealed t*e following behavior of th* se*en airports for the
</line>
</par><par>
<line>
20*0 scenario. Five air*orts divided the n*t*ork as main pl*ye*s in this scen*ri*, with
</line>
<line>
no
</line>
</par><par>
<line>
domin*n* ai*por*s, **me*y: SBRJ (n*utde* of 15.00% and nIndeg of 12, 00%), SBBR
</line>
<line>
(*Ou*deg of 12.5*% an* nIndeg of 13.20%), SBSP (***t**g of 1*.3*% and nIn*eg *f
</line>
<line>
12.80%), *BCF (n*utdeg of 25.80% **d n*nd** of *0,70%), SBGR (nOut*eg of *.40% *nd
</line>
<line>
nIn*eg of 10.80%). In this sce*ario, ther* was no airport *ith an intermedia*e functi*n to *he
</line>
<line>
n*twork of origins and destinations. The *ther two airports have lower deg*ees i* t*e analysis
</line>
<line>
s*ale, suc* as SBK* (nOut*eg of 5.70% an* *Indeg of 20.40%) and SBGL (*Outdeg of
</line>
<line>
5.30% a*d nIndeg *f 5.00%).
</line>
<line>
Table 9 - The net*ork performance based on the *roposed *c*n*rios
</line>
</par><par>
<line>
Scena*ios
</line>
<line>
*onth*
</line>
<line>
Out-Ce
</line>
<line>
In-Ce
</line>
<line>
D*nsity
</line>
</par><par>
<line>
200*
</line>
<line>
1*
</line>
<line>
1 6 ,7 5
</line>
<line>
1 6 ,2 6
</line>
<line>
9 5 ,2
</line>
</par><par>
<line>
2007
</line>
<line>
*2
</line>
<line>
1 9 ,0 2
</line>
<line>
1 7 ,4 8
</line>
<line>
8 8 ,*
</line>
</par><par>
<line>
2015
</line>
<line>
1*
</line>
<line>
1 8 ,3
</line>
<line>
1 8 ,1 3
</line>
<line>
9 5 ,2
</line>
</par><par>
<line>
201*
</line>
<line>
12
</line>
<line>
1 4 ,6
</line>
<line>
* 4 ,7
</line>
<line>
* 5 ,*
</line>
</par><par>
<line>
20*0
</line>
<line>
9
</line>
<line>
1 * ,* 8
</line>
<line>
* ,* 9
</line>
<line>
9 0 ,5
</line>
</par><par>
<line>
Source: Aut*ors (2020).
</line>
<line>
Regard*ng the d*gree of c*n**alization as a basis in th* central axis of the netw*rk,
</line>
<line>
the*e w*s 15.98% of Out-Ce and In-Ce 9.69%, a drop compared to the scenario* o* 2003,
</line>
<line>
2007, *015, *nd 2*18. Abo*t *he *etwork *ensity, there is a degree *f 90.*0% of c**nections
</line>
</par><par>
<line>
t* the l*nks *f al* possible inte*actions, demonstra*i*g high
</line>
<line>
network connectivit* in 2020,
</line>
</par><par>
<line>
comp*red to pr*v**us sce*ario* of 2003, 2015, and 201*.
</line>
</par><par>
<line>
5 CON**USION
</line>
</par><par>
<line>
Th* **rports of Br*síl*a (SBBR), São Pa*lo (SBSP), and Rio de Ja*eiro (SBRJ) have
</line>
<line>
historica*ly supported the ne*w*rk, generating its high co*nectivity. Over *he pe*iod *f the 18
</line>
</par><par>
<line>
*ears analyzed, B*asília airport has establ**h*d *t*elf as an act*r wit* **ntin*ous
</line>
<line>
and
</line>
</par><par>
<line>
e*pressi*e
</line>
<line>
grow*h in
</line>
<line>
t*ese n*t*ork*. The*e is a high degree of connectivity
</line>
<line>
a**
</line>
</par><par>
<line>
competitiveness among t** largest Brazilian passenger airports in the scenarios of *0*3, 20*7,
</line>
<line>
2015, and 2018. In the 2020 scen*rio, it is pos*ible *o note *ha* *he pand*mic peri*d ge*era*ed
</line>
<line>
a signif*ca*t drop in the de**ee of centralit* and density of the network. In thi* case, ther* was
</line>
<line>
a decentralizatio* of th* d***ity flow from one ai*port (200*, 2007, 201*, and 2018 s*en*rios)
</line>
<line>
to f*ve ai*ports in the 202* scenario to support the *etwor*.
</line>
</par><par>
</page><line>
Rev. FSA, *er*si*a, v. 18, n. *, art. 6, *. 94-109, *ul. 2021
</line>
<line>
www4.fsan*t.com.br/rev*s*a
</line>
</par><page>
<par>
<line>
Scenarios of the D**ree of Centrality and Density of the N**wor*s of the Mai* Br**ilian Airpor*s
</line>
<line>
107
</line>
</par><par>
<line>
Fo* *uture research, it is inter*s**ng to expl*re non-hub *etworks, re*e*ve hub
</line>
<line>
networks, and international car*o hubs as part of mitigati*g the *ffects o* **nges*ion hubs and
</line>
<line>
for mapping and c*eatin* contingency plans for the Brazilia* airport system.
</line>
<line>
REFER*NCES
</line>
<line>
Alk**bneh, F., Diabat, A., & Elhed*li. (2019). A La*ra*gian heuristic and GRASP for the
</line>
</par><par>
<line>
hub-an*-s**ke netwo*k syste* w**h ec*nomies-of-s*ale a*d congestion.
</line>
<line>
Transportatio*
</line>
</par><par>
<line>
Researc* Pa** C, 1*2, 249-2*3.
</line>
</par><par>
<line>
Allroggen, F., Wittman, M. D., & Mali*a, R. (2015). How **r t*ansport *onnects the wo*ld -
</line>
</par><par>
<line>
A ne* me*ric of air *o*nectivit* a*d *ts evoluti*n
</line>
<line>
between 1990 and2012.
</line>
<line>
**ans*ortation
</line>
</par><par>
<line>
Research Part *, 80, *84-201. 2015.
</line>
</par><par>
<line>
**ê*cia **c*onal *e Av*ação C*v*l (ANAC). (2019). Base de dado*
</line>
<line>
completa. D*dos
</line>
</par><par>
<line>
*s*atístico**. Base
</line>
<line>
*e dados subd*vida por a*o 2000,
</line>
<line>
2009, 2*15;
</line>
<line>
*018. Passageiros
</line>
</par><par>
<line>
(Origem/Des*ino), Aero**ves (Pousos/Dec*l*gens).
</line>
<line>
Ball, M., Barnhart, C., N*mhauser, *., & *doni, A. (2006). Air t*ansportation: irregular
</line>
</par><par>
<line>
operatio*s and
</line>
<line>
cont*ol. In: H**dbooks o* Operat*ons R*s**rch and Manageme*t, Nor*h-
</line>
</par><par>
<line>
Ho*lan*.
</line>
</par><par>
<line>
Borgatti, S. P. (*0*2). *etDraw. Graph Visua*izati** S*ftware. Harvard: Analytic
</line>
<line>
Technologies.
</line>
</par><par>
<line>
Borgatti,
</line>
<line>
S. P., *verett. M.G., & F*eem*n, L. C. (2002). Ucinet *o* Win**ws *o*tware *or
</line>
</par><par>
<line>
Social Network Analysi*.
</line>
<line>
Brueckner, J. K., & Lin, M. H. (2016). Conven*ent fl*ght conne*t**n* vs. *i*p*rt congestion:
</line>
<line>
Modeling **e \ro*ling h*b\. Intern*tional Jou*nal of I*dustr*al Organizati*n, 48, 118-142.
</line>
</par><par>
<line>
Burghouwt, G., & Wi*, J. (2005). Te*poral *onfigurations of *uropean Airl*ne. Jou*n*l of
</line>
</par><par>
<line>
Ai* Tra***ort Managemen*, 11(3), 185-198.
</line>
</par><par>
<line>
B*tton, K. (2002). "*ebunking some commo* myths ab*ut airpo*t hubs. "Journal of A*r
</line>
<line>
Transport Management, *(3), 17*- 202.
</line>
<line>
Campbell, *. F. (199*). Integer p*og*am*in* formulations of discrete h*b locat*on problem*.
</line>
<line>
Europea* Journal of O*erational R*search, 72, 387-405.
</line>
<line>
Campb*ll, F. J., Stiehr, G., Er*st, A. T., & *rishnamoo*thy, M. (2003). Sol*ing hu* arc
</line>
<line>
l*cation pro**ems on * cluster of *orkstat*on*. *aralle* Computi*g, 29, 555-55*.
</line>
</par><par>
<line>
Campbell, A. M., Low*, *. J., & Zhang, L. (2007). The
</line>
<line>
p-hu* *enter allocation
</line>
<line>
problem.
</line>
</par><par>
<line>
Europ*an Jo*rnal of *peratio*al Rese*rc*, *76, 819-*21, 834.
</line>
</par><par>
<line>
Fageda, *., & F*or*s-F**lol, R. (2017). A note on opt*ma* airline *etworks *nder
</line>
<line>
airp*rt
</line>
</par><par>
<line>
conges*ion. Economics Letters, 128, 90-94.
</line>
</par><par>
</page><line>
Rev. FSA, Ter*sina PI, v. **, n. 7, art. 6, p. 94-109, jul. *02* www4.fsane*.com.br/re*ista
</line>
</par><page>
<par>
<line>
L. R. *onet*e, F. A. Araújo, J. G. M. R*is, P. *. *. Corr*ia
</line>
<line>
1*8
</line>
</par><par>
<line>
F*ng, B., L*, *., & Shen, Z. J. (2015). Air cargo **erations: Literature r*view and c*mpar**on
</line>
<line>
wi*h prati**s. Tr*nsportation Research Par* *, 56, 263-280.
</line>
<line>
Hannem*n, R. A. (*001). *ntr*ducción a los Métodos de Análisis de *edes Socia**s.
</line>
<line>
Departame*to de S**io*og** *e la Univer*ida*e de Califórnia, Riv*r*ide, US, 150.
</line>
<line>
Hanneman, R. *., & *idd*e, N. (20**). Intro*uction *o *OCIAL Network Methods.
</line>
<line>
Rive**ise, *A: University of California, Rivers**e.
</line>
</par><par>
<line>
I*te*natio*al Ci*i*
</line>
<line>
Av**tion Orga*iz*tio*
</line>
<line>-</line>
<line>
ICAO.
</line>
<line>
(2*20).
</line>
<line>
*etrieved
</line>
<line>
*r*m
</line>
</par><par>
<line>
http*://www.i*ao.int/Pages/de**ult.aspx
</line>
<line>
J*nic, M. (2005). M*deling the *arge-scale di*ruptio* of an airline n*tw*rk. J*urnal Transport
</line>
<line>
Engin*er, 131, 249-26*.
</line>
<line>
*in, M. H., & Yimin, Z. (20**). *ub-airport congest*on prici*g and capacity **vestment.
</line>
<line>
*r*n*p*rtatio* R*search *a*t B: Met*odol*gical, 101, 89-106.
</line>
<line>
Mo*ri, S. *., *arimi, *., Kordani, A. A., & Na*rollahi, M. (2018). Airline hub-and *poke
</line>
<line>
network design bas*d o* airport capacity en*elope cu**e: A pr**tical view. Co*puters &
</line>
<line>
In*ust*ial Eng*neering, 125, 3*5-39*.
</line>
</par><par>
<line>
O'Kel**, M. *., &
</line>
<line>
Bryan, D. L. *. (199*). "Hub l*cation with fl*w economies of scale".
</line>
</par><par>
<line>
Transpo*tat*on Re*earch B, *2(8), 608.
</line>
<line>
Ryerson, M. *., Kim, & H. (2013). *ntegr*ting airli*e operatio**l p*a*tice* into pass*n*er
</line>
<line>
a*rlin* hub defini*i*n. Jour*al o* Transport Geography, 3*, 84-63.
</line>
<line>
Rod*íguez-Déniz, H., Suau-S*nchez, P., & Vo*t*s-Dorta, A. (2013). Cla**ify*ng a*rports
</line>
<line>
acc*rdi*g to th*ir hub dimension*: an application to the US domest*c network. Journal *f
</line>
<line>
Transport Geography, 33, 188-195.
</line>
<line>
Scott, J. (2000). Soci*l Net*ork Ana*ysis. A handbo*k. N*w York. SAGE Publica*ions L*da,
</line>
<line>
2 edition.
</line>
<line>
Taherkhan*, *., & Alum*r, S. A. (2019). Profit *aximizing hub *o*ation p*oblems. Omega,
</line>
<line>
86, 1-1*.
</line>
<line>
Vel*huis, J., & Kroes, E. K. (200*). Dynami*s in relative network performance *f the main
</line>
<line>
Eur***an hub air*ort*. European Tr*nsport Conference, C*m**idge.
</line>
</par><par>
<line>
Yu, *., Yu, Z., & Bo, *. (*015). The r*liable hu*-and-s**ke
</line>
<line>
d*sign prob*em: **dels and
</line>
</par><par>
<line>
algorithms. T*ansp*rtation Research Par* B, 77, 103-1*2.
</line>
</par><par>
<line>
Wasse*man, *., & Faust, K. (1994). Social N**wo*k Analysis: Methods and Applications. 1.
</line>
<line>
ed. Cambridge: Cambridge Un*versity Press.
</line>
</par><par>
</page><line>
*ev. FSA, Teresina, v. 18, n. 7, a*t. 6, p. 94-109, j*l. 2021
</line>
<line>
www4.fsan*t.co*.br/*evista
</line>
</par><page>
</document><par>
<line>
Scen*rios of the Degree of Centrality and Density of *he Networks of the Main Brazilian A**ports
</line>
<line>
109
</line>
</par><par>
<line>
Como **fer**ci*r este A*tigo, conforme AB*T:
</line>
</par><par>
<line>
B*NETT*, *. R; A*AÚJO, F. A; REI*, J. G. M; CORR**A, P. F. C. *cen*r*o* of t*e D*gree o*
</line>
<line>
Ce*t*ality *nd Density of the Networks of the M*in Brazilia* Airpor*s Between 20*3 to 2020. R*v.
</line>
<line>
FSA, Teresina, v.18, n. 7, art. 6, p. 94-*09, *ul. 2021.
</line>
</par><par>
<line>
Contri*uiç*o do* A*to**s
</line>
<line>
L. R. Bone*te
</line>
<line>
*. A. Araújo
</line>
<line>
J. *. M. Reis
</line>
<line>
P. *. C. Correi*
</line>
</par><par>
<line>
1) concepção e *lanejam*nto.
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
</par><par>
<line>
*) a*álise e inter*retação dos dad*s.
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
</par><par>
<line>
*) *laboração *o rascu*ho ou na revisão crítica do *o*t*údo.
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
*
</line>
</par><par>
<line>
4) partici*ação na aprovação d* *er*ão fin*l d* m*nuscrito.
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
</par><par>
</page><line>
Re*. FS*, Teres**a PI, v. *8, n. *, art. 6, p. 9*-109, jul. 2021
</line>
<line>
*ww4.**anet.com.br/revist*
</line>
</par>Apontamentos
- Não há apontamentos.
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.
Atribuição (BY): Os licenciados têm o direito de copiar, distribuir, exibir e executar a obra e fazer trabalhos derivados dela, conquanto que deem créditos devidos ao autor ou licenciador, na maneira especificada por estes.
Não Comercial (NC): Os licenciados podem copiar, distribuir, exibir e executar a obra e fazer trabalhos derivados dela, desde que sejam para fins não-comerciais
Sem Derivações (ND): Os licenciados podem copiar, distribuir, exibir e executar apenas cópias exatas da obra, não podendo criar derivações da mesma.
ISSN 1806-6356 (Impresso) e 2317-2983 (Eletrônico)