Study of Pann Components in Image Treatment for Medical Diagnostic Decision-Making / Estudo De Componentes Pann no Tratamento de Imagem para Tomada de Decisão de Diagnóstico Médico
Resumo
The hospital branch has benefited from offering activities that use collections of imaging tests for specialists to use for decision-making in conjunction with other clinical examinations. It is intended to study pathologies resulting from cancer cells. In this article, there is the possibility of presenting Artificial Intelligence solutions to support specialists. For this, the objective is to use the concepts of Paraconsistent Logic and Artificial Intelligence applied in Artificial Neural Networks and to propose the use of components of Paraconsistent Artificial Neural Networks (PANN) to support specialists in decision-making.
Keywords: Artificial Paraconsistent Neurons. Artificial Intelligence. Paraconsistent Logic. Deep Learning Paraconsistent.
RESUMO
O setor hospitalar se beneficiou de oferecer atividades que utilizam coleções de testes de imagem para que os especialistas possam usar para tomar decisões em conjunto com outros exames clínicos. O objetivo é estudar patologias resultantes de células cancerígenas. Neste artigo, há a possibilidade de apresentar soluções de Inteligência Artificial para apoiar os especialistas. Para isso, o objetivo é utilizar os conceitos de Lógica Paraconsistente e Inteligência Artificial aplicados em Redes Neurais Artificiais e propor o uso de componentes de Redes Neurais Artificiais Paraconsistentes (PANN) para apoiar os especialistas na tomada de decisões.
Palavras-chave: Neurônios Artificiais Paraconsistentes. Inteligência Artificial. Lógica Paraconsistente. Deep Learning Paraconsistente.
Referências
ABE, J. M.; SILVA FILHO, J. I.; CELESTINO, U.; ARAÚJO, H. C. (2011). Lógica Paraconsistente Anotada Evidencial Eτ. Comunicar.
AKAMA, S.; ABE, J. M.; NAKAMATSU, K. (2015). Evidential Reasoning in Annotated Logics. 2015 IIAI 4th International Congress on Advanced Applied Informatics. Anais... In: 2015 IIAI 4TH.
BALANCIN, M. L. (2020). Relevância do perfil morfológico, molecular e imunomatricial como sinalizadores de alvos terapêuticos no mesotelioma maligno: Tese (Doutorado em Medicina) - Faculdade de Medicina da Universidade de São Paulo, São Paulo, 2020.
BULTEN, W.; BÁNDI, P.; HOVEN, J.; LOO, R. V.; LOTZ, J.; WEISS, N.; LAAK, J. V. D.; GINNEKEN, B. V.; KAA, C. H.; LITJENS, G. (2019). Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard. Scientific Reports, 9(1), 864. https://doi.org/10.1038/s41598-018-37257-4.
CARVALHO, F. R.; ABE, J. M. (2018). A Paraconsistent Decision-Making Method, Smart Innovation, Systems and Technologies volume 87, Springer International Publishing 2018. ISSN 2190-3018 ISSN 2190-3026 (electronic), ISBN 978-3-319-74109-3 ISBN 978-3-319-74110-9 (eBook), https://doi.org/10.1007/978-3-319-74110-9, Library of Congress Control Number: 2018933003.
FILHO, J. I. S.; ABE, J. M.; TORRES, G. L. (2008). Inteligência Artificial com as Redes de Análises Paraconsistentes. 1. ed. Rio de Janeiro RJ Brasil: LTC - Livros Técnicos e Científicos S. A., 2008.
MYCIELSKI, J. (1972). Review: Marvin Minsky and Seymour Papert, Perceptrons, An Introduction to Computational Geometry. Bulletin of the American Mathematical Society, v. 78, n. 1, p. 12–15, jan. 1972.
RUSSELL, S. J.; NORVIG, P. (2010). Artificial Intelligence: A Modern Approach (3rd edición). Upper Saddle River: Prentice Hall. ISBN 9780136042594.
SIMEONE, O. (2018). A Brief Introduction to Machine Learning for Engineers. Foundations and Trends® in Signal Processing, v. 12, n. 3–4, p. 200–431. https://doi.org/10.1561/2000000102.
WANG, Y., LEUNG, H., GAVRILOVA, M., ZATARAIN, O., GRAVES, D., LU, J., HOWARD, N., KWONG, S., SHEU, P., & PATEL, S. (2018). A Survey and Formal Analyses on Sequence Learning Methodologies and Deep Neural Networks. 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), 6–15. https://doi.org/10.1109/ICCI-CC.2018.8482022
ZHANG, X., ZHAO, J., & LECUN, Y. (2015). Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28. NIPS 2015. https://arxiv.org/abs/1509.01626v3.
DOI: http://dx.doi.org/10.12819/2021.18.7.11
Apontamentos
- Não há apontamentos.
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.
Atribuição (BY): Os licenciados têm o direito de copiar, distribuir, exibir e executar a obra e fazer trabalhos derivados dela, conquanto que deem créditos devidos ao autor ou licenciador, na maneira especificada por estes.
Não Comercial (NC): Os licenciados podem copiar, distribuir, exibir e executar a obra e fazer trabalhos derivados dela, desde que sejam para fins não-comerciais
Sem Derivações (ND): Os licenciados podem copiar, distribuir, exibir e executar apenas cópias exatas da obra, não podendo criar derivações da mesma.
ISSN 1806-6356 (Impresso) e 2317-2983 (Eletrônico)