<document>
<page>
<par>
<line>
Centro Unv*rsitário Santo Agostinho
</line>
</par><par>
<line>
www*.fsanet.com.*r/revista
</line>
<line>
Rev. FSA, Tere*i*a, *. *8, n. 7, art. 11, p. 173-186, *u*. 20*1
</line>
<line>
ISSN Impresso: *806-6356 I*SN Ele*rônico: 2317-2983
</line>
<line>
http://dx.doi.org/10.12819/20*1.18.7.11
</line>
<line>
*tudy of Pann Components in Image *r*atment fo* Me*ical D**gnostic Decis**n-Making
</line>
<line>
Est*do de Compon*ntes *a*n no Trata*ento de Image* *ara T*mada de De*isã* de
</line>
<line>
Dia*n*stico M*dico
</line>
<line>
Luiz Antônio de *im*
</line>
<line>
Doutorando em E***nharia de *rodução pela Un*versidad* Paulista
</line>
<line>
Pr*fessor da Univer*id*de Paulista
</line>
<line>
E-ma*l: luizlim*@un*p.br
</line>
<line>
Jair **noro Ab*
</line>
<line>
Do*tor em Filos*f** pela Uni*ersidade de São P*u*o
</line>
<line>
Profess*r da Univers*dade Paulista
</line>
<line>
E-ma*l: ja*rabe@uol.com.b*
</line>
<line>
Ang*l A*tôni* Gonzalez *ar*i*ez
</line>
<line>
Doutor*ndo *m Engenharia d* Produção pela Universidade Pa*lista
</line>
<line>
Professo* d* U*i*er*idad* Pau**sta
</line>
<line>
E-mail: aagmar*i*ez@gm*il.com
</line>
<line>
Jona*as Santo* *e *ouza
</line>
<line>
Mestre em Engenhar*a de Pr*d*ção pela U**v*rsi*ade Paul*sta
</line>
<line>
E-mail: j**atas151*@gmail.c*m
</line>
<line>
Flávio A*adeu *ernardin*
</line>
<line>
Mestran*o em En*enharia d* *rodução p*la Universida*e Pa*l*sta
</line>
<line>
Professor do SEN*I
</line>
<line>
*-mail: fl*vioamb**nar@gm*il.com
</line>
<line>
Nilson Amado de *ouza
</line>
<line>
M**trando em Engenharia de P*odução p*la Universidade Paulist*
</line>
<line>
E-mail: *i*son.amado@*mail.com
</line>
<line>
L*lia* S*yur* Sakamoto
</line>
<line>
Dou*orando em Engenharia *e Produçã* pel* U*ivers*dade Paulista
</line>
<line>
E-mail: *iliam.saka*ot*@*mail.co*
</line>
</par><par>
<line>
Ender*ço: Lui* A*tôni* de Lima
</line>
</par><par>
<line>
Av. Paulist*, 900 - *ela Vista, São Pa*lo - SP, 01310-
</line>
<line>
Edito*-C**fe: *r. Tonny Ke*ley de Alenc*r
</line>
</par><par>
<line>
10*. Brasil.
</line>
<line>
Rodr*gues
</line>
</par><par>
<line>
Ender*ço:
</line>
<line>
Jair Minoro Abe
</line>
</par><par>
<line>
Av. Paulist*, 90* - Be*a Vista, São Paulo - SP, 01310-
</line>
<line>
Art*go rec*bid* em 14/06/2021. Última
</line>
<line>
versão
</line>
</par><par>
<line>
*00. Brasil.
</line>
<line>
r*ceb*da em 27/06/*021. Aprovado em 28/06/2021.
</line>
</par><par>
<line>
Ende*eço:
</line>
<line>
Angel **tônio Gonzalez Martinez
</line>
</par><par>
<line>
Av. Pa*l**ta, *00 - Bela V**ta, S*o P*u** - SP, 01310-
</line>
<line>
A*aliad* pelo sis*ema Triple R*v*ew: Desk *eview a)
</line>
</par><par>
<line>
100. Brasil.
</line>
<line>
pelo Ed*t*r-*hefe; e b) Doub*e Blind Review
</line>
</par><par>
<line>
E*d**e*o:
</line>
<line>
**natas Santos *e Souza
</line>
<line>
(avaliação *eg* por d*is avali*dores da á*ea).
</line>
</par><par>
<line>
Av. Pa*lista, 900 - Bela Vista, São Paulo - SP, 01310-
</line>
</par><par>
<line>
**0. Brasil.
</line>
<line>
Revisã*: Gramatical, Normativa
</line>
<line>
e d* F*rmataçã*
</line>
</par><par>
<line>
Endereço: *l*v*o Amadeu Bernardini
</line>
</par><par>
<line>
Av. Paulis*a, 900 - Bel* V*sta, São Paulo - SP, 0131*-
</line>
</par><par>
<line>
100. Bra*i*.
</line>
</par><par>
<line>
Endereço: Nilson Amado de *ouz*
</line>
</par><par>
<line>
Av. Paulist*, 90* - Bela Vista, *ão Paulo - SP, *1310-
</line>
</par><par>
<line>
10*. B*as**.
</line>
</par><par>
<line>
End*r*ç*: *iliam S*yur* S**amo*o
</line>
</par><par>
<line>
Av. *a*list*, 900 - B*la Vista, Sã* P**lo - SP, 01*10-
</line>
</par><par>
</page><line>
100. *rasil.
</line>
</par><page>
<par>
<line>
L. *. *i*a, J. M. Abe, A. A. G. *artinez, J. S. Souza, F. A. Berna*dini, N. A. Souza, L. S. Sakamoto
</line>
<line>
174
</line>
</par><par>
<line>
ABSTR*CT
</line>
</par><par>
<line>
The hospital branch has b*nefited from offering activitie* that u*e collections of imag*ng tests
</line>
<line>
f*r sp*ciali*t* to us* for decision-making in **nju*ction with *ther clinica* examinations. It is
</line>
<line>
intended to study p**hologies resulti*g from cancer cells. I* this a*ticle, there is the *ossibility
</line>
<line>
of presenting Art*ficial *nte*ligence solutions to s*pport s*ecialists. *or this, the *bjec*ive i* to
</line>
<line>
use *he concepts of Paracon*istent Logic and Ar*if*cial Intelli*ence applied in Arti*icial
</line>
<line>
Neura* Networks and t* propose the us* of components of Pa**consistent A*tificial Neu*al
</line>
<line>
Networks (PANN) to su*p*rt spe*i*lists in decision-mak*ng.
</line>
<line>
Keywor*s: Artificial Para*ons*s**nt Neurons. Arti*icial *ntellige*ce. Para*onsistent Logic.
</line>
<line>
Deep L*ar*i*g Pa*aconsist*nt.
</line>
<line>
RESUMO
</line>
</par><par>
<line>
O setor *os*ital*r se benefic*ou *e ofe*ecer ati*id*des que utiliza* *oleções ** testes
</line>
<line>
de
</line>
</par><par>
<line>
imag*m *ara que os e*pec*al**tas possam usar p*r* tomar decisões em conjun*o com outros
</line>
<line>
*xames clínic*s. O objet*vo é estuda* pa*olo*ias re*ultantes de c*lulas *ancerígenas. Neste
</line>
</par><par>
<line>
*rtig*,
</line>
<line>
há * pos*ibilidade d* aprese*tar s*l*ções de Inte*i*ên*i* Arti*icial par* apoiar
</line>
<line>
os
</line>
</par><par>
<line>
*specia*istas. Par* isso, o objetivo é utili*ar os conce*tos de Ló*ica Paraconsistente
</line>
<line>
e
</line>
</par><par>
<line>
**teligência *rtifici*l aplicados em Redes Neurais Artifi*iais e prop*r o uso ** co*ponentes
</line>
<line>
de Re*es Neur*** Artif*ciais Pa*aconsistentes (PA*N) par* a*oiar os *s*ec*ali*tas n* t*mada
</line>
<line>
de decisões.
</line>
<line>
Palavras-chave: *eurônios Arti**ciais Paraconsi*tentes. Inte*igê*cia Ar**f*cial. Lógic*
</line>
<line>
Paracons*stente. Deep Lea*ni*g Paraconsistente.
</line>
</par><par>
</page><line>
Rev. FSA, *ere*ina, v. 18, *. 7, art. 11, p. 173-*86, jul. 2021
</line>
<line>
**w4.fsan*t.com.br/r*vista
</line>
</par><page>
<par>
<line>
*tudy of Pann Components in Imag* Treat**nt for Medic*l Diag*o***c *e*isio*-M*king
</line>
<line>
1*5
</line>
</par><par>
<line>
1 INTRODUC*ION
</line>
</par><par>
<line>
*es**rch relate* to AI started after the Second W*rl* Wa* and the first work in this
</line>
</par><par>
<line>
are* was carried *ut by Alan Turing (RUSS*L* & NO*VIG,
</line>
<line>
*010), since t*en *uch
</line>
</par><par>
<line>
*e**arch
</line>
<line>
has been c*r*ied out. Defining the *oncept of artificia* in*e*ligenc* ver* difficul*. *s
</line>
</par><par>
<line>
F*r *his reason, *r*ificial Intellig*nce *** **d remai*s, a notion that
</line>
<line>
has mult*ple
</line>
</par><par>
<line>
interpretations, often conflicti** or circula*.
</line>
</par><par>
<line>
*h* diffic*lty of a c*ea* def*n**ion ma* c*me from
</line>
<line>
**e fact that *here are several
</line>
</par><par>
<line>
huma* faculties **at *r* bei*g reproduced, from *he abilit* to pl*y chess, or in**lved in area*
</line>
<line>
such as comp*ter vision, *oic* an*l*si*, and synthesis, f**z* logic, artific*a* *eural n*twor*s,
</line>
</par><par>
<line>
an* many ot*ers. I**t*ally, AI
</line>
<line>
aim** to rep**duce human thought. A*tifici*l I*telligen*e
</line>
</par><par>
<line>
embraced the
</line>
<line>
i *e a
</line>
<line>
of repro*ucing human *a*ul*ies *uch as cr*ativ*ty, self-impro**m**t, and
</line>
</par><par>
<line>
th* use of language. Ar*ifici*l Ne*ral Networ*s.
</line>
<line>
Sect*o* he**ings *hould be left justifi*d, bo*d, with the firs* l*tte* capi**lized and
</line>
</par><par>
<line>
n*mbere* *onse**tively, s*a*ti*g *ith
</line>
<line>
the Introductio*. Sub-section head**g* shou*d b* in
</line>
</par><par>
<line>
c*pi*al and lower-*as* it*lic le*ter*, **mbered 1.*, 1.2, etc., and l*ft j*stified, with second and
</line>
<line>
subsequent lines inde*ted. A*l headings should have a mini*um of three text lines *ootnotes.
</line>
<line>
Warren McCu*loch and *alter Pitts creat*d a **mputat*o*al mod*l for ne*ral
</line>
<line>
netw*rk* b*s*d on m*themati*s an* a*gori*hms called thres*old logic. This *odel **ved t**
</line>
<line>
w*y fo* *esearc* o* the neu*al network divid*d i*to t*o a*proa*he*: one approach focused on
</line>
<line>
biologi*al p**c*sses in the brai*, w*ile the ot**r focused on the a*plication o* neural network*
</line>
<line>
*o artif*ci*l *ntel*igence.
</line>
<line>
*he *o*ion of a *etwork of neurons *egins i** first s**ps in *949, Donald *e*b wrote
</line>
<line>
T*e Organiza*ion of Beh*vi*r, a work th*t pointe* to th* f*c* that neu*al pathway* are
</line>
</par><par>
<line>
s*rengthened each time they are *sed, concept *un*ame*tal*y essenti*l to th* way h*w a
</line>
<line>
humans learn. If two nerves fire a* t*e same time, he *rgued, the connec*ion be**een t*em is
</line>
<line>
improved.
</line>
<line>
I* 195*, Frank **senblatt created *erc*ptron (M**IELSKI, 1972), *n algorith* for
</line>
<line>
pattern re*o*nition base* on a *w*-*ayer com*utational neural *etwork usi*g sim*le *ddi*ion
</line>
<line>
and subtr*cti**. He a*so proposed add*tional *ayer* with m*t**matical notations, but that
</line>
<line>
would not be don* until 197*.
</line>
<line>
In 1959, B*rnar* Widrow an* M*rci*n Hoff, fro* Stanfo*d, d*velo**d mo*els called
</line>
<line>
"A*ALIN*" an* "*ADALI*E". *hat was th* fi*st neural network applied to a real problem.
</line>
</par><par>
</page><line>
Re*. *S*, Teresina *I, *. 18, n. 7, *rt. 11, p. 173-186, jul. 20*1
</line>
<line>
www4.fsanet.*om.br/*e*ist*
</line>
</par><page>
<par>
<line>
*. A. *ima, J. M. Abe, A. A. G. Ma**in*z, J. S. Souza, *. *. B*rn*r*ini, N. A. So*za, L. *. S*kam*to
</line>
<line>
17*
</line>
</par><par>
<line>
Ness Rec*rrent *eural Network - RNN net*ork architect*re: The hi*den neurons o*
</line>
<line>
the recur*ent neur*l netwo** receive the res*lt o* the mathem*tical operation *hat they
</line>
</par><par>
<line>
per*ormed ** the previous time
</line>
<line>
in addition to the
</line>
<line>
data from the
</line>
<line>
previ**s lay*r. Th*s, th*
</line>
</par><par>
<line>
RNNs consider a temporal dep*ndenc* between the input data. Because they *ave
</line>
<line>
* hi *
</line>
</par><par>
<line>
cha*act*ristic, t*ese networks can **del p***lems wi*h temporal ch**ac*eristics, su*h
</line>
<line>
as the
</line>
</par><par>
<line>
weat*er forecast giv*n the climate hi*tory in a wi*dow o* the past.
</line>
</par><par>
<line>
The Co*volution*l Ne*ral Network - *NN, or Deep C*nvolutional Ne*work - DCN,
</line>
<line>
*r si*ply convolutional n*ural ne*wo** ha* a very d*ff*rent structu*e fr*m those presented s*
</line>
<line>
*ar. In the convolutio* la*ers, the information pas*es thr*ugh seve*al *ilters, which i* pr*ctice
</line>
<line>
are numeric matrices, with *he fun*tio* o* acce**uatin* r*gu*ar local pat**rns, while reducing
</line>
</par><par>
<line>
th* si*e of the original
</line>
<line>
data. *h* results of various fi**e*s *re summar**ed by p*oling
</line>
</par><par>
<line>
operati*ns. *n
</line>
<line>
the dee*est part of *he
</line>
<line>
co*volutions, data in a reduced dimensional space is
</line>
</par><par>
<line>
expec*ed *o con*ain en*u*h inform*ti*n about these loca* patter** to assign a seman*i* value
</line>
<line>
*o the origina* data. These *ata th*n go thro*gh a classic FFN st*uct*r* fo* the classif*c*tion
</line>
<line>
tas*. For these characteri*tics, the most common app*ic*tio* of *NNs is in th* classifi*atio*
</line>
<line>
of images; the filters *cce*tuate the attribut*s o* the objec*s n*cessary for their correct
</line>
</par><par>
<line>
*lassi*ication. A CNN specialized in class*fying faces,
</line>
<line>
fo* e*am*le, in the first la*er*
</line>
</par><par>
<line>
recogniz*s c*ntours, curves, *nd bo**e**; further on, it uses this info*mation to recog*ize
</line>
<line>
mouth, eyes, ear, and nose; and i* th* end, it re*ognizes the entire face. In addit*on to im*ges,
</line>
<line>
*ny info**ati*n with lo*a* regula*it* can *enefit fro* the use *f *NN*, suc* as audio for
</line>
<line>
exam*le.
</line>
<line>
A Paraconsis*ent (ABE et al., 2011). Deep Lear*i*g Ne*work - DL*, als* know* as a
</line>
</par><par>
<line>
Deep *rtifici*l *eural Network - DANN, where the art*fi*i*l
</line>
<line>
ne*rons are
</line>
<line>
Paraco*sistent
</line>
</par><par>
</page><line>
Arti*ic*a* Ne*ron* - PAN. **Ps *re constr*cte* with Paraconsiste*t Neural Units (FILHO,
</line>
<line>
ABE & **RRES, 2008) *rom different *ami***s.
</line>
<line>
The stu*ie* on Artificial Neur*l Netwo*ks, Network *omp*nen*s, a*d Parac*nsis*ent
</line>
<line>
Logic (AKAMA, AB* & NAKAMATSU, 2015), culm*nated i* the cr*ation of the flowchar*
</line>
<line>
(fig. 1) to materialize the unif*cation of *oncepts. So, we must *se the sequen*e th*t st*rts *n
</line>
<line>
the defin**ion of the "1- Nuc*eus" which corresponds t* the extrac**on o* the char*cteristic* in
</line>
<line>
*he spec*fic cas* of images, the "Laplac*an" type was used *ith a f*c** on *dge *etec**on.
</line>
<line>
Then, the "2- conv*lut**n" (ZHANG, ZHAO & LECUN, 2015). is done specif*cally
</line>
<line>
in the treatm*nt of images (*ULTEN et al., *019) because i* w*s used as a *odel ** featu*e
</line>
<line>
*etect*rs (lines, edges). Now "3-norm*l*z****n" is a*plied to standardi*e all in*ut* (text and
</line>
<line>
Rev. FSA, Ter*sina, *. 1*, n. 7, art. 11, p. 173-186, jul. 2021 *ww*.fsanet.c*m.b*/*evi*ta
</line>
</par><page>
<par>
<line>
Study of Pann Compone*ts in *m*ge Treatment for Medi*al Dia*nost*c Decision-M*k*ng
</line>
<line>
**7
</line>
</par><par>
<line>
ima*es) i* the artificial neural network, which w*uld b* to transform *ll inp*ts in interval*
</line>
<line>
*et*een 0 and 1 to gu*rantee perform*nce.
</line>
<line>
According to the comple*ion o* *he stage in the treatment of d*t* (tex* and im*ges), a
</line>
</par><par>
<line>
neural "4-architect*re" (quanti*y of layers and neur**s) is define* according to
</line>
<line>
t he
</line>
</par><par>
<line>
complexity and avai*able computational capac*ty.
</line>
</par><par>
<line>
Figure 1 - Paraconsist*nt Artificial Neural N*twork* Overview
</line>
</par><par>
<line>
At t*i* p***t, th* stu*y was gui*ed by proposing the use of paraconsistent logic, a*d
</line>
<line>
t*us were defined, which a*e r*les for obtaining plausible **sults. A** **n*lly, "5- l*a*nin*"
</line>
<line>
during train**g by the ar*ificia* neural *et*ork and "6- displ*y" the results for analys*s.
</line>
</par><par>
<line>
The b*se *f the CNAPp compo*ent (fig.5) *a* funda*ental for the cr*ation of
</line>
<line>
t he
</line>
</par><par>
<line>
other components that co*soli*ate t*e para*ons*stent famil*: CNAPpd (f*g. 2), *NAPd (fig.
</line>
<line>
3), CNAPco (fig. *).
</line>
</par><par>
</page><line>
Rev. FSA, Teresina PI, v. 18, n. 7, *rt. 1*, *. 173-186, jul. 2*21
</line>
<line>
w*w4.fs*ne*.c*m.*r/re*i*ta
</line>
</par><page>
<par>
<line>
L. A. Lima, J. M. A*e, A. A. G. Martine*, *. S. Souz*, F. A. B**nardini, N. A. S*uza, L. S. Sak*moto
</line>
<line>
178
</line>
</par><par>
<line>
Figure * - Paraco*siste*t Artificial Neural Compon*n* *f Passage *nd Dec*sion -
</line>
<line>
CNA*pd
</line>
</par><par>
<line>
Th*s *omponent analyzes the input *vi***ce and outputs two po*sible V or Undefined
</line>
<line>
*e*ults (1.0.5).
</line>
<line>
*igure 3 - *araco*s**te*t Artifi*ial Neu*al Component *f Dec***on - CNAP*
</line>
</par><par>
<line>
This component ana*yzes the *nput evidence a*d outp*t* *hree possible re*ults V, *, o*
</line>
<line>
Undefined (1,
</line>
<line>
0,0.5).
</line>
</par><par>
</page><line>
*ev. FSA, T*resina, v. 1*, n. 7, art. 11, p. 173-186, j*l. 2021
</line>
<line>
www4.fsanet.com.br/rev*sta
</line>
</par><page>
<par>
<line>
Study of Pann Component* in Image Treatm*nt for M*dical D*agn*stic Decision-*akin*
</line>
<line>
1*9
</line>
</par><par>
<line>
Figure * - Paraconsistent Arti*i*ial Neu*al Co*po*ent for Compleme*tation - CNAPco
</line>
</par><par>
<line>
This *ompon*nt has th* fu*ction of complementin* the favo*able *v*dence, ha*ing th*
</line>
<line>
lim*ts controlled by the to*e*an*e factor.
</line>
<line>
I* the a*vance*ent of researches an arti*ic*al neural ne*w*rk, it *s under*to*d th*t
</line>
<line>
they can be added t* the concepts of pa*aconsistent l*gic, providing th* viability sho*n *n the
</line>
<line>
flowchart (*ig. 1) and with * gre*t capacity *o be a**lied in the systemic prec*pts with
</line>
<line>
co*putat**nal a*gorithms in th*ir particular*ty in the components basic, learni*g and decision-
</line>
</par><par>
<line>
m*king (CARVALHO & ABE, 2018), as it is possible to obt**n th* *xtraction
</line>
<line>
of
</line>
</par><par>
<line>
characte*is**cs in *he data made available both in historical bases and in real-time that *an *e
</line>
</par><par>
<line>
*rop*sed by
</line>
<line>
viewing *a*terns
</line>
<line>
to s*ppo*t specialists (BALANCIN, 2020) in th*ir
</line>
<line>
decision-
</line>
</par><par>
<line>
making.
</line>
</par><par>
<line>
2
</line>
<line>
METHODOL*GY
</line>
<line>
Ini*i*l*y, a bibliog*ap*ic review was carri*d out in Arti**cial Int*l*igence, Dee*
</line>
</par><par>
<line>
Lear**ng (WANG et al., 2018). foc*s*d on the application in lo*ist*cs centers, followed by a
</line>
</par><par>
<line>
re*earc* of
</line>
<line>
the P*racons*stent Annotated Logic E for application Artificial Intelligence.
</line>
</par><par>
<line>
F*om this proposal, th* progra*mi*g of th* A**if*cia* Intelligence Python language wa*
</line>
<line>
elab*rated with *he c*nc*p*s of Paraconsistent Evident*al L*g*c E*, thro**h t*e paraconsis*ent
</line>
<line>
a**orithm, *hich wil* pl*y a fun*amental role in decisi*n-**king assistance (*KAM*, ABE
</line>
</par><par>
</page><line>
Rev. FSA, *eresina PI, v. 18, n. 7, art. 11, p. 1*3-1*6, j*l. 2021
</line>
<line>
www4.fsanet.com.b*/revista
</line>
</par><page>
<par>
<line>
L. *. Lima, J. M. Abe, *. A. G. Martinez, J. S. Souza, F. A. Bernard*ni, N. A. *ouza, L. *. Sak*moto
</line>
<line>
180
</line>
</par><par>
<line>
& NAKA**TSU, 2015). *or t*e beginning of *he development *f the paracon*istent
</line>
<line>
*lgorith*, *he reticu*ate (fig. 5) was used as a *efer*nc* (A*E et a*., 20*1).
</line>
<line>
Figure 5 - Aspect o* the Lat**ce to *ake dec**ion (ABE et al., 201*)
</line>
</par><par>
<line>
3
</line>
<line>
D*SCU*SI*N
</line>
<line>
In t*e ad*anc*ment of re*ear*hes an artific*al n*ural network, i* is *nderstood that
</line>
</par><par>
<line>
*hey can be *dded to the co*c*pts of paracon*istent logic, provi*ing th* viability show* in the
</line>
</par><par>
<line>
flowchart (fig. *) *nd with *
</line>
<line>
grea* *apacity to *e app*ied *n the s*stemic pre*ept* wit*
</line>
</par><par>
<line>
computational algo*i*hms *n th**r par*ic*lar*ty in the co*pon*nts ba**c, lear*ing (SIMONE,
</line>
</par><par>
<line>
2*18) and *ecis*o*-*aking, as it is
</line>
<line>
pos***le to *btain the **traction o* characteristics t*e in
</line>
</par><par>
<line>
da*a m*d* availa*l* *oth in his*orical ba*es and in re*l-time that can be proposed by *iewin*
</line>
<line>
patterns ** suppo*t s*ecialists in their *ecis*on-ma*ing.
</line>
<line>
The parac*ns*stent analyzer un*t should reflect a **t of artificial par*consist*nt
</line>
<line>
neu*ons capab*e of serving a pa*ticular purpos*. *n general, the p*raco*s**ten* a*t**ici*l
</line>
<line>
ne***n can contain at l*ast four possible outpu**: False, True Inco*sistent, and P*racomple*e.
</line>
<line>
Next, w* propose the *euron (fig. 6) with inputs (µ1, *2), adjustment **ctors and
</line>
<line>
limits (Fat), an* possible outputs (S). This w*th t** possib*lity of meeting extr*me and non-
</line>
<line>
extreme state*.
</line>
</par><par>
</page><line>
Rev. FSA, Teresin*, v. 18, *. 7, art. 11, *. 173-186, jul. 2021
</line>
<line>
*w**.fsanet.com.b*/revista
</line>
</par><page>
<par>
<line>
Study of Pann *omponents in Image Treatment for Medical Diagno*t*c Decision-Maki*g
</line>
<line>
181
</line>
</par><par>
<line>
Figure 6 - (*) *a*ac*nsis**nt Neuron Symbol; (b) Art*fi*ial Paraconsistent Neuro*s
</line>
</par><par>
<line>
Cur*ently, the fa*ily of u*i*s is widely disseminated by pr*li*inary studie* an* s*ands
</line>
<line>
out a* memory units ** as pat**r* sensors in pr*mary layers. We have, for ex*m*le, t*e Basi*
</line>
<line>
*araconsistent Artificial Neu*al C*ll - CNA*ba, Pa*acons**t*nt Artificial Neural Cell of
</line>
</par><par>
<line>
learning *N*Pa (fig. 8), it *as the *u*ction of *e*rning and *nlearning p*tterns th*t are -
</line>
<line>
repe*tedly applied at its e*tra***. *nd the Pa*aconsistent *rti*ic*al Neural Cell for dec*sion -
</line>
</par><par>
<line>
C**Pd, has
</line>
<line>
the function of making *he paraconsistent analy**s and de*ermini** a *e*ision
</line>
</par><par>
<line>
based o* the resu*ts of t*e *na*y*is. This m**es possible the *pp*arance o* several new units
</line>
<line>
such as the *rop*sed de*i*n o* the Paraconsist*n* Artificia* Neural Unit - U**P2.0 (fig. *).
</line>
<line>
This has *** function of m*e**ng e**rem* and non-extreme s*at*s.
</line>
</par><par>
</page><line>
Rev. FSA, Ter*sina PI, v. 18, n. 7, a*t. 11, p. 173-186, jul. 2021
</line>
<line>
www4.f**net.com.*r/*evi*ta
</line>
</par><page>
<par>
<line>
*. A. Lima, J. M. Abe, A. A. G. Martinez, J. S. S*uza, F. A. Bernardini, N. A. Souza, L. S. Sak*m*to
</line>
<line>
182
</line>
</par><par>
<line>
Fig*re 7 - Paraco*sistent Artif*cial Neural **it - UNAP2.0
</line>
</par><par>
<line>
In the *araconsistent A*ti*icia* Neural Unit - UNAP2.0, it stands o*t *or allowing the
</line>
<line>
treatment of extreme a*d non-e*treme states (f*g. *). *hus, the analys*s a*d supp**t *o the
</line>
<line>
spec*alist ca* be adjuste* to plau**ble *e*els during th* ana*ys*s.
</line>
<line>
The Paraconsiste** Artificial Neura* component stand*rd - CNAPp perf*rms the
</line>
<line>
*ar*consistent *naly*is through the fo*lo*ing algorithm para-analyzer (*ig. 9).
</line>
</par><par>
</page><line>
Rev. *SA, Teresina, v. 18, n. 7, art. 11, p. 173-186, jul. 2021
</line>
<line>
www4.*sa*et.*om.br/revista
</line>
</par><page>
<par>
<line>
Study of Pann Components in Im*ge Treatme*t for Me**cal Diagnostic Decision-M*ki*g
</line>
<line>
183
</line>
</par><par>
<line>
Figure 8 - A*t*fici*l I*telligen*e
</line>
</par><par>
<line>
Sourc*: (FILHO; ABE & TOR*E*, 2008)
</line>
<line>
The p**a-ana*yzer algor*thm (fig. 9) al*o*s the a*pli*ation of paracon*istent log*c and
</line>
<line>
was rep*ese*ted in modeling language to elucidate th* und*rstanding when materialized in the
</line>
<line>
computa*ional app*i*ation.
</line>
</par><par>
</page><line>
Re*. F*A, Teresi*a PI, v. 18, n. 7, art. *1, p. 173-186, j**. 2021
</line>
<line>
www*.f*anet.*om.br/revista
</line>
</par><page>
<par>
<line>
*. A. Lima, J. M. Abe, A. *. G. Martin*z, J. S. Souza, F. A. Bernardini, N. A. S*uza, L. S. Sakamoto
</line>
<line>
18*
</line>
</par><par>
<line>
Fig*re * - Flowchart para-anal*zer alg*ri*hm
</line>
</par><par>
<line>
*ou*ce: adapted from (FILHO; ABE & TOR*E*, 20*8)
</line>
</par><par>
</page><line>
Rev. FSA, *eresina, v. 18, n. 7, art. 11, p. 1*3-18*, jul. *0*1
</line>
<line>
www4.fsanet.*om.*r/revist*
</line>
</par><page>
<par>
<line>
Study o* *ann Comp*n*nts in Image *reatment for Medical **agnostic De*ision-Making
</line>
<line>
1*5
</line>
</par><par>
<line>
4 CON*LUS*ON
</line>
</par><par>
<line>
The set of images provid* a *etter *nde*standing in th* ana*yzes and that *nvolv*
</line>
</par><par>
<line>
*pec*a***ts. In *iew *f *his m*tivation, it was pr*posed *o
</line>
<line>
unify the techniques of neural
</line>
</par><par>
<line>
networks
</line>
<line>
an* para*on*istent logic th*t culmi*ated in *he c*ea*ion of basic steps (fi*. 1) to
</line>
</par><par>
<line>
ap*ly artificial paraconsistent neural n*tworks - PANN. Thus, the construct*on of **e
</line>
<line>
paraconsistent artificial n*uron (fig. 8) proved feasible, for the creation of a Para*onsistent
</line>
<line>
Art*ficia* Neu*al Ne**or* - PAN*, *n a compu*er system *apable of handling response
</line>
<line>
through the network and usin* Paraconsist**t Log*c supporting s*ecialists in decision-
</line>
<line>
making.
</line>
</par><par>
<line>
ACK*OWLED**MENTS
</line>
<line>
"This *tudy *as fin**ced i* part by the Coorden*ção de Aperfe*çoamento de Pessoal de Nível
</line>
<line>
S***rior - Brasil (**PES) -Finance Code 001".
</line>
<line>
REFER*N*IES
</line>
<line>
AB*, J. M.; SILVA *IL*O, J. I.; CELESTINO, U.; ARAÚJO, H. *. (2011). Lógica
</line>
<line>
Paraconsistente Ano*ada Evide*cial **. Comunicar.
</line>
<line>
AKAM*, S.; ABE, J. M.; NAKAMATSU, K. (2015). Evident*al Reasoni*g in Annotated
</line>
</par><par>
<line>
Logi*s. 2015 IIAI 4th I*te**ational Congr*ss on Advanced Applie* Infor*atic*. Anais...
</line>
<line>
*n:
</line>
</par><par>
<line>
2015 IIAI 4TH.
</line>
</par><par>
<line>
BALANCIN, *. L. (*020). Relevância do per*il morfológico, molecular e
</line>
<line>
im*no*atricial
</line>
</par><par>
<line>
co*o sinal*zadores de alvos ter*pê**icos no me*ot*lioma mali*no: Tes* (Doutorado em
</line>
<line>
Medicina) - Fac*l*ad* de Med*ci*a da Univers*dade de São Paulo, S** Pau*o, *020.
</line>
<line>
BULTEN, *.; BÁN*I, P.; HOVEN, J.; LO*, R. V.; LOTZ, J.; WEISS, N.; LAAK, J. *. D.;
</line>
<line>
GI*NEKEN, B. V.; KAA, C. *.; LITJE*S, *. (2019). Epithelium segm*nta*ion using deep
</line>
</par><par>
<line>
learning in H&E-s*aine*
</line>
<line>
pr*state sp*cimens with *mmunohistoch*mi*try *s referenc*
</line>
</par><par>
<line>
st*n*ard. S*ientific Reports, 9(1), 864. http*://do*.org/*0.103*/s*1598-01*-37257-4.
</line>
<line>
CARV*LHO, F. R.; ABE, *. M. (2018). A P*r*consisten* *ecision-Makin* Method, Smart
</line>
<line>
Innov*tion, Syste*s an* *echnologies volume 87, Sp*inger In**rnationa* P*bl*shing 2*1*.
</line>
<line>
ISS* 2190-3018 ISSN 2*90-3026 (electronic), ISBN 978-3-319-74109-* ISB* 978-3-319-
</line>
</par><par>
<line>
74110-9
</line>
<line>
(eBook), h***s://do*.org/1*.1007/978-3-319-74*1*-9, L*brary of Congress Control
</line>
</par><par>
<line>
Number: 2018933003.
</line>
</par><par>
</page><line>
*e*. FSA, Teresina PI, v. 18, n. 7, art. 11, *. 173-186, jul. 2*21
</line>
<line>
ww*4.fs*net.com.br/revista
</line>
</par><page>
</document><par>
<line>
L. A. Lima, *. M. Abe, A. *. G. Mar*inez, J. S. S*uza, F. A. *ernardini, *. A. So**a, L. S. S*kamoto
</line>
<line>
*8*
</line>
</par><par>
<line>
FI*H*, J. I. S.; AB*, J. M.; TO*RES, G. *. (2008). Inteligência Art**icial *o* as Redes de
</line>
</par><par>
<line>
An*lises Pa*aconsisten*es. 1. ed. Rio d* Janeiro RJ Brasil: LTC - Livr*s Técni*os
</line>
<line>
e
</line>
</par><par>
<line>
*ientífi*os S. A., 2*08.
</line>
</par><par>
<line>
*YCIELSKI, *. (1972). Review: Mar*in Minsky and Seymour *aper*, Percep*rons, An
</line>
<line>
Introdu*tion to Computational Ge*metry. B**leti* of t*e American Mathe**tical Society, v.
</line>
<line>
78, n. 1, p. 12-15, jan. 1*72.
</line>
<line>
RUS*E*L, S. J.; NORVIG, P. (2010). Artifi**al Intellige*ce: A Modern Approach (3rd
</line>
<line>
edición). Upper Sadd*e River: Pre**ice Hall. ISBN 9*80**6042594.
</line>
<line>
SIMEONE, *. (2018). A Brief In*r*du*ti** to *achi*e Le*rni*g for En*inee**. Foundati*n*
</line>
</par><par>
<line>
an*
</line>
<line>
Trends®
</line>
<line>
in
</line>
<line>
Sign*l
</line>
<line>
P*oce*sing,
</line>
<line>
v.
</line>
<line>
12,
</line>
<line>
n.
</line>
<line>
3-4,
</line>
<line>
p.
</line>
<line>
*00-431.
</line>
</par><par>
<line>
https://doi.org/10.156*/2000000102.
</line>
<line>
*ANG, Y., L*UNG, H., GAVRIL*V*, M., ZATAR*IN, O., GRAVES, D., LU, J.,
</line>
<line>
HO*A*D, N., KWONG, S., SHEU, P., & PATE*, S. (*018). A Su*vey and Fo*mal
</line>
<line>
Analy*es on **que*ce *ear*i** Methodologies an* Deep Neural Netwo*ks. 2018 IEEE 1*th
</line>
<line>
Inte*national C**ference on Cognitive Info*mati*s & Cog*itive *ompu*ing (ICCI*CC), 6-15.
</line>
<line>
http*://d*i.org/10.1109/I**I-CC.2018.84*20*2
</line>
<line>
ZHANG, X., ZHAO, *., & LEC*N, *. (201*). *harac*er-level Convolutional Network* for
</line>
</par><par>
<line>
Text Clas*ifica*i*n. *dvances in
</line>
<line>
Neur*l In**rm*tion Processing Systems 28. NIPS *015.
</line>
</par><par>
<line>
https://arxiv.o*g/abs/1509.01626**.
</line>
</par><par>
<line>
Como R*ferenciar e*te *rtigo, conform* ABNT:
</line>
<line>
*IMA, L. A; A*E, J. M; MARTINEZ, A. A. G; *OU*A, J. S; BERNARDIN*, F. A; SO**A, N. A;
</line>
<line>
*AKAMOTO, *. S. Study of *ann C**pon*nts in Image Tre*tment for Medi**l Diagnost*c Decision-
</line>
<line>
Making. Rev. FSA, Tere*ina, v.1*, n. 7, *rt. 11, *. 173-186, jul. *021.
</line>
</par><par>
<line>
*ontribuiçã* dos Autores
</line>
<line>
*. A. Lima
</line>
<line>
J. M . Abe
</line>
<line>
A. A. G. Ma*tinez
</line>
<line>
J. S. *ouza
</line>
<line>
F. *. Be**ardini
</line>
<line>
N. A. Souza
</line>
<line>
L. *. Sa**moto
</line>
</par><par>
<line>
*) concepção e pl**ejamento.
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
*
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
</par><par>
<line>
2) análise e interp*etaçã* dos dado*.
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
</par><par>
<line>
3) el*boração d* rascunho *u na revisão *ríti*a d* cont*údo.
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
*
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
</par><par>
<line>
*) *art*c*pa*ão na apro*açã* da versão fin*l do manuscrito.
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
<line>
X
</line>
</par><par>
</page><line>
Rev. FSA, Teresina, *. 18, n. 7, *rt. 11, p. 173-186, jul. 2021
</line>
<line>
www4.fsa*et.c**.*r/revista
</line>
</par>Apontamentos
- Não há apontamentos.
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.
Atribuição (BY): Os licenciados têm o direito de copiar, distribuir, exibir e executar a obra e fazer trabalhos derivados dela, conquanto que deem créditos devidos ao autor ou licenciador, na maneira especificada por estes.
Não Comercial (NC): Os licenciados podem copiar, distribuir, exibir e executar a obra e fazer trabalhos derivados dela, desde que sejam para fins não-comerciais
Sem Derivações (ND): Os licenciados podem copiar, distribuir, exibir e executar apenas cópias exatas da obra, não podendo criar derivações da mesma.
ISSN 1806-6356 (Impresso) e 2317-2983 (Eletrônico)