Impressão 3D: Análise da Evolução e Seus Impactos no Mundo Científico / 3D Printing: Analysis of the Evolution and Its Impacts on the Scientific Field

André Luiz Emmel Silva, Jorge André Ribas Moraes, Lisianne Brittes Benitez, Ezequiel Augusto Kaufmann

Abstract


Que as impressoras 3D são uma realidade todos sabemos. Mas como foi o início de todo esse processo? Com preços cada vez mais acessíveis e a possibilidade de impressão sem limites a partir da nossa imaginação, as impressoras 3D invadiram o mercado. Usadas para prototipar invenções ou fabricar produtos, para pesquisas científicas de ponta ou dentro de nossas casas, não se questiona mais seu potencial. Assim, este artigo objetiva descrever e analisar os principais métodos de impressão 3D no que tange a vantagens, desvantagens, materiais, aplicações e número de artigos publicados, e pesquisar os marcos históricos da impressão 3D desde a sua criação. Para tanto, realizou-se uma pesquisa bibliográfica nos principais periódicos da área e tabulou-se a quantidade de publicações científicas na base de dados Scopus. Os resultados apontam para o marco inicial em 1984 com a estereolitografia (SLA), inventada por Charles W. Hull. Em seguida surgiram a FDM e SLS em 1989, DMLS em 1994 e polyjet, em 2001. Os métodos de impressão 3D são utilizados nas mais variadas aplicações, com destaque para a área biomédica e fabricação de protótipos. A manufatura aditiva é objeto de diversas pesquisas científicas no mundo todo, o que indica a existência de um vasto campo de pesquisa a ser desenvolvido e, consequentemente, um número ainda maior de aplicações a ser descoberto. Mudanças expressivas ocorrerão nos próximos anos, podendo impactar desde a forma pela qual produtos são desenvolvidos até o modo pelo qual implantes são construídos e inseridos em seres humanos.

 

Palavras-chave: Impressão 3D. Marcos históricos. Vantagens e Desvantagens. Aplicações.

 

ABSTRACT

It is already known that the 3D printers are a reality. Nevertheless, how was the beginning of this process? With increasingly affordable prices and the possibility of a limitless printing based on our imagination, the 3D printers invaded the market. Used to prototype inventions or to manufacture products, for cutting-edge scientific research or inside our houses, the potential of 3D printers has not been questioned anymore. Hence, this article aims at describing and analyzing the main 3D-printing methods with regards to its advantages, disadvantages, materials, applications and number of papers published, and to research the historical milestones of 3D printing since its creation. In order to do so, a bibliographic research was carried out in the main journals of the area and the quantity of scientific publications of the database Scopus was tabulated. The results indicate that the initial milestone took place in 1984 with the stereolithography (SLA), invented by Charles W. Hull. Subsequently, the FDM and the SLS were invented in 1989; DMLS in 1994 and polyjet, in 2001. The 3D printing methods are used in the most diverse applications, with emphasis on the biomedical and prototype creation areas. The additive manufacturing is the study object of several scientific researches around the world, which demonstrates the existence of a vast research field to be developed, and therefore an even greater number of applications to be discovered. Significant changes will happen over the next years, whose outcomes will affect from the way products are developed to the way in which implants are built and inserted in human beings.

 

Keywords: 3D Printing. Historical Milestones. Advantages and Disadvantages. Applications.

 


References


ADDITIVELY. Your digital meeting place of the additive manufacturing industry. Disponível em: Acesso em: 20/11/2019.

APRECIA. First FDA-approved medicine manufactured using 3d printing technology now available. Ohio, 22/03/2016. Disponível em: Acesso em: 16/11/2019.

ATTARAN, M. The rise of 3D printing: the advantages of additive manufacturing over traditional manufacturing. Business Horizons, v. 60, n. 5, p. 677-688, 2017. https://doi.org/10.1016/j.bushor.2017.05.011

BEECROFT, M. Digital interlooping: 3D printing of weft-knitted textile-based tubular structures using selective laser sintering of nylon powder. International Journal of Fashion Design, Technology and Education, v. 12, n. 2, p. 218-224. 2019. https://doi.org/10.1080/17543266.2019.1573269

BOGUE, R. 3D printing: the dawn of a new era in manufacturing? Assembly Automation, v. 33, n. 4, p. 307-311, 2013. https://doi.org/10.1108/AA-06-2013-055

CALIGNANO, F.; MANFREDI, D.; AMBROSIO, E. P.; BIAMINO, S.; LOMBARDI, M.; ATZENI, E.; SALMI, A.; MINETOLA, P.; IULIANO, L.; FINO, P. Overview on Additive Manufacturing Technologies. Proceedings of the IEEE, v. 105, n. 4, p. 593-612, 2017. https://doi.org/10.1109/JPROC.2016.2625098

CALIGNANO, F.; MANFREDI, D.; AMBROSIO, E. P.; IULIANO, L.; FINO, P. Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int J Adv Manuf Technol, v. 67, p. 2743-2751, 2013. https://doi.org/10.1007/s00170-012-4688-9

CHANDRAMOHAN, P.; BHERO, S.; MANIKANDASUBRAMANIAN, K.; RAVISHANKAR, B. A review of additive manufacturing of α- β Ti alloy components through selective laser melting and laser metal deposition. Journal of Engineering Science and Technology, v. 13, n. 3, p. 790-812, 2018.

DODZIUK, H. Applications of 3D printing in healthcare. Polish journal of cardio-thoracic surgery, v. 13, n. 3, p. 283-293, 2016. https://doi.org/10.5114/kitp.2016.62625

FORBES. Significant 3D Printing Forecast Surges To $35.6 Billion. Disponível em . Acesso em 02/11/2019.

FORD, S. Additive manufacturing technology: Potential Implications for U.S. Manufacturing Competitiveness. Journal of International Commerce & Economics, p. 1-35, 2014.

GIL, A. C. Como elaborar projetos de pesquisa. 6. ed. São Paulo: Editora Atlas, 2017.

GOTHAIT, H. Apparatus and method for three dimensional model printing. Depositante: Objet Geometries Ltd. US 6,259,962 B1. Depósito: 02/05/1999. Concessão: 10/07/2001. Disponível em: . Acesso em: 08/11/2019.

GOVERNO DE QUEENSLAND. 3D printed tibia implanted in world-first surgery at PAH. Disponível em: . Acesso em: 08/11/2019.

GRÜNBERGER, T.; DOMRÖSE, T. Direct metal laser sintering: identification of process phenomena by optical in-process monitoring. Laser Technik Journal, v. 12, n. 1, p. 45-48, 2015. https://doi.org/10.1002/latj.201500007

HAGER, I.; GOLONKA, A.; PUTANOWICZ, R. 3D printing of buildings and building components as the future of sustainable construction? Procedia Engineering, v. 151, p. 292-299, 2016. https://doi.org/10.1016/j.proeng.2016.07.357

HAKIMI, N.; CHENG, R.; LENG, L.; CHENG, R.; SOTOUDEHFAR, M.; BA, P. Q.; BAKHTYAR, N.; AMINI-NIK, S.; JESCHKE, M. G.; GÜNTHER, A. Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab on a Chip, v. 18, p. 1440-1451, 2018. https://doi.org/10.1039/c7lc01236e

HERADIO, R.; PEREZ-MORAGO, H.; FERNANDEZ-AMOROS, D.; JAVIER CABRERIZO, F.; HERRERA-VIEDMA, E. A bibliometric analysis of 20 years of research on software product lines. Information and Software Technology, v. 72, p. 1-15, 2016. https://doi.org/10.1016/j.infsof.2015.11.004

HOAG, C.; SPRADLING, D.; SHULMAN, H. Introduction to Additive Manufacturing. Ceramic Industry Magazine, 2012.

HUANG, P. H.; LIU, P.; MOKASDAR, A.; HOU, L. Additive manufacturing and its societal impact: a literature review. The International Journal of Advanced Manufacturing Technology, v. 67, n. 5-8, p. 1191-1203, 2013. https://doi.org/10.1007/s00170-012-4558-5

ISAACSON, A.; SWIOKLO, S.; CONNON, C. J. 3D bioprinting of a corneal stroma equivalent. Experimental Eye Research, v. 173, p. 188-193, 2018. https://doi.org/10.1016/j.exer.2018.05.010

KREIGER, M.; PEARCE, J. M. Environmental Life Cycle Analysis of Distributed Three-Dimensional Printing and Conventional Manufacturing of Polymer Products. ACS Sustainable Chem. Eng.,v. 1, n.12, p 1511-1519, 2013. https://doi.org/10.1021/c400093k

LAN, P. T.; CHOU, S. Y.; CHENT, L. L.; GEMMILL, D. Determining fabrication orientations for rapid prototyping with stereolithography apparatus. Computer-Aided Design, v. 29, n. 1, p. 53-62, 1997. https://doi.org/10.1016/S0010-4485(96)00049-8

LE BOURHIS, F.; KERBRAT, O.; HASCOET, J. Y.; MOGNOL, P. Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing. Int J Adv Manuf Technol, v. 69, n. 9-12, p. 1927-1939, 2013. https://doi.org/10.1007/s00170-013-5151-2

LOEST, M. R. Tecnologias de Manufatura Aditiva (Impressão 3D) que você deve conhecer (1ª parte – SLA). 2017. Disponível em . Acesso em 10/09/2019.

MA, X.; QU, X.; ZHU, W., LI, Y. S.; YUAN, S.; ZHANG, H.; LIU, J.; WANG, P.; LAI, C. S. E.; ZANELLA, F.; FENG, G. S.; SHEIKH, F.;CHIEN, S.; CHEN, S. Deterministically patterned biomimetic human IPSC-derived hepatic model via rapid 3D bioprinting. Proceedings of the National Academy of Sciences, v. 113, n. 8, p. 2206-2211, 2016. https://doi.org/10.1073/pnas.1524510113

MANNOOR, M. S.; JIANG, Z.; JAMES, T.; KONG, Y. L.; MALATESTA, K. A.; SOBOYEJO, W. O.; VERMA, N.; GRACIAS, D. H.; MCALPINE, M. C. 3D Printed bionic ears. Nano Letters, v. 13, n. 6, p. 2634-2639, 2013. https://doi.org/10.1021/nl4007744

MAZZOLI, A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput, v. 51, n. 3, p. 245-256, 2013. https://doi.org/10.1007/s11517-012-1001-x

MEISEL, N. A.; ELLIOT, A. M.; WILLIAMS, C. B. A procedure for creating actuatedjoints via embedding shape memoryalloys in PolyJet 3D printing. Journal of Intelligent Material Systems and Structures, v. 26, n. 12, p. 1498-1512, 2015. https://doi.org/10.1177/1045389X14544144

MELCHELS, F. P. W.; FEIJEN, J.; GRIJPMA, D. W. A review on stereolithography and its applications in biomedical engineering. Biomaterials, v. 31, n. 24, p. 6121-6130, 2010. https://doi.org/10.1016/j.biomaterials.2010.04.050

MORROW, W. R.; QI, H.; KIM, I.; MAZUMDER, J.; SKERLOS, S. J. Environmental aspects of laser-based and conventional tool and die manufacturing. Journal of Cleaner Production, v. 15, n. 10, p. 932-943, 2007. https://doi.org/10.1016/j.jclepro.2005.11.030

NASA - National Aeronautics and Space Administration. Refabricator to Recycle, Reuse Plastic Installed on Space Station. Disponível em . Acesso em: 08/11/2019.

NING, F.; CONG, W.; HU, Z.; HUANG, K. Additive manufacturing of thermoplastic matrix composites using fused depositionmodeling: A comparison of two reinforcements. Journal of Composite Materials, v. 51, n. 27, p. 3733-3742, 2017. https://doi.org/10.1177/0021998317692659

NOOR, N.; SHAPIRA, A.; EDRI, R.; GAL, I.; WERTHEIM, L.; DVIR, T. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Advanced Science, v. 6, 2019. https://doi.org/10.1002/advs.201900344

PALLAROLAS, E. A. F. F. Revisão técnica de processos de manufatura aditiva e estudo de configurações para estruturas de impressoras tridimensionais. 2013. Tese (Graduação em engenharia mecânica) – Escola de Engenharia de São Carlos da Universidade de São Paulo, São Carlos, 2013.

REVILLA-LEÓN, M.; ÖZCAN, M. Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. Journal of Prosthodontics, v. 28, n. 2, p. 146-158, 2019. https://doi.org/10.1111/jopr.12801

RODRIGUES, V. P.; ZANCUL, E. S.; MANÇANARES, C. G.; GIORDANO, C. M.; SALERNO, M. S. Manufatura aditiva: estado da arte e framework de aplicações. Revista Gestão da Produção, Operações e Sistemas, v. 12, n. 3, p. 1-34, 2017. DOI: https://doi.org/10.15675/gepros.v12i3.1657

SANDSTRÖM, C. G. The non-disruptive emergence of an ecosystem for 3D Printing — Insights from the hearing aid industry's transition 1989–2008. Technological Forecasting and Social Change, v. 102, p. 160-168, 2016. https://doi.org/10.1016/j.techfore.2015.09.006

SEITZ, D. Meet Easton LaChappelle, The 19-Year-Old Luminary Building A Cheaper, Better Prosthetic Limb. Disponível em . Acesso em: 08/11/2019.

SILVA, A. L. E.; MORAES, J. A. R.; BENITEZ, L. B.; KAUFMANN, E. A.; FURSTENAU, L. B. Mapeamento da produção científica acerca do uso de biocompósitos nos processos de impressões 3D. Ibero-American Journal of Environmental Sciences, v. 11, n. 1, p. 236-250, 2020. https://doi.org/10.6008/CBPC2179-6858.2020.001.0022

SILVA, G. C. Prototipagem rápida e ferramental rápido aplicados às peças utilizadas em ensaios estáticos de embalagens para acondicionamento e transporte de peças automotivas. 2008. Dissertação (mestrado profissional em engenharia automotiva). Escola Politécnica da Universidade de São Paulo – São Paulo, 2008.

SINGH, M.; JONNALAGADDA, S. Advances in bioprinting using additive manufacturing. Eur J Pharm Sci, v. 143, 2020. https://doi.org/10.1016/j.ejps.2019.105167

SINGH, R. Process capability study of polyjet printing for plastic components. J Mech Sci Technol, v. 25, n. 4, p. 1011-1015, 2011. https://doi.org/10.1007/s12206-011-0203-8

SHARMA, R. The 3D printing revolution you have not heard about. Disponível em . Acesso em: 08/11/2019.

SHELLABEAR, M; NYRHILÄ, O. DMLS – Development history and state of the art. LANE 2004 conference. Erlangen, Germany, 2004.

SHISHKOVSKII, I. V.; YADROITSEV, I. A.; SMUROV, I. Y. Selective Laser Sintering/Melting Of Nitinol–Hydroxyapatite Composite for Medical Applications. Powder Metall Met Ceram, v. 50, p. 275-283, 2011. https://doi.org/10.1007/s11106-011-9329-6

STANSBURY, J. W.; IDACAVAGE, M. J. 3D Printing with polymers: challenges among expanding options and opportunities. Dental Materials, v. 32, n. 1, p. 54-64, 2016. https://doi.org/10.1016/j.dental.2015.09.018

STOOF, D.; PICKERING, K.; ZHANG, Y. Fused Deposition Modelling of Natural Fibre/Polylactic Acid Composites. J. Compos. Sci., v. 1, n. 8, 2017. https://doi.org/10.3390/jcs1010008

UDROIU, R.; BRAG, I. C. Polyjet technology applications for rapid tooling. MATEC Web Conf., v. 112, 2017. https://doi.org/10.1051/matecconf/201711203011

VEIT, D. R. Impactos da manufatura aditiva nos sistemas produtivos e suas repercussões nos critérios competitivos. 2018. Tese (Doutorado em Engenharia de Produção) - Universidade do Vale do Rio dos Sinos, São Leopoldo, 2018.

VERMA, A.; TYAGI, S.; YANG, K. Modeling and optimization of direct metal laser sintering process. Int J Adv Manuf Technol, v. 77, p. 847-860, 2015. https://doi.org/10.1007/s00170-014-6443-x

WITTBRODT, B.; LAURETO, J.; TYMRAK, B.; PEARCE, J. M. Distributed manufacturing with 3-D printing: a case study of recreational vehicle solar photovoltaic mounting systems. J Frugal Innov, v. 1, n. 1, 2015. https://doi.org/10.1186/s40669-014-0001-z

WOHLERS, T.; GORNET, T. Histoy of additive manufacturing. Wohlers Report, p. 1-34, 2016.

WONG, K. V.; HERNANDEZ, A. A review of additive manufacturing. International Scholarly Research Network, ISRN Mechanical Engineering, 2012. https://doi.org/10.5402/2012/208760

WOOSLEY, S.; GALEHDARI, N. A.; KELKAR, A.; ARAVAMUDHAN, S. Fused deposition modeling 3D printing of boron nitride composites for neutron radiation shielding. Journal of Materials Research, v. 33, n. 22, p. 3657-3664, 2018 https://doi.org/10.1557/jmr.2018.316

YUAN, B.; ZHOU, S. Y.; CHEN, X. S. Rapid prototyping technology and its application in bone tissue engineering. J. Zhejiang Univ. Sci. B, v. 18, n. 4, p. 303-315, 2017. https://dx.doi.org/10.1631/jzus.B1600118

ZEIN, I.; HUTMACHER, D. W.; TANC, K. C.; TEOH, S. H. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, v. 23, n. 4, p. 1169-1185, 2002. https://doi.org/10.1016/S0142-9612(01)00232-0

ZHAO, F.; LI, D.; JIN, Z. Preliminary Investigation of Poly-Ether-Ether-Ketone Based on Fused Deposition Modeling for Medical Applications. Materials, v. 11, n. 2, p. 288, 2018. https://doi.org/10.3390/ma11020288




DOI: http://dx.doi.org/10.12819/2021.18.11.6

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

ISSN 1806-6356 (Print) and 2317-2983 (Electronic)