<document>
<page>
<par>
<line> Centro Unv*rsitário Santo Agostinho </line>
</par>
<par>
<line> www*.fsanet.com.*r/revista </line>
<line> Rev. FSA, Tere*i*a, *. *8, n. 7, art. 12, p. 187-198, *u*. 20*1 </line>
<line> ISSN Impresso: *806-6356 I*SN Ele*rônico: 2317-2983 </line>
<line> http://dx.doi.org/10.12819/20*1.18.7.12 </line>
</par>
<par>
<line> *sing SNA to Improve B2B Last-Mile *n *ndustry S*ct*r </line>
<line> Usan** SNA para Melho**r a Última Mi*ha de B2B no S*tor I*d*strial </line>
</par>
<par>
<line> Fe*nanda Alves d* *raúj* </line>
<line> Mestre em *nge*haria *e *roduçã* pela Universidade P*ul*sta </line>
<line> E-mail: ferna***.logistic*@gmail.com </line>
<line> Luiz R*drigo Bon*tte </line>
<line> Doutora*o em Engenharia d* Pr*dução pela Univ*rsidade P*ul*sta </line>
<line> Mest** em Enge*ha*ia de Produç*o **la Unive*sidade de Araraq*a*a </line>
<line> E-mail: lu*z.bonette@al*no.unip.br </line>
<line> João Gil*ert* Mendes dos Re*s </line>
<line> Do*to* em En*enharia d* Pr*d*ção pela U*ive*sidade Paulis*a </line>
<line> Professor da Universidade Pa*lista </line>
<line> E-mail: joa*.r*i*@d*ce*te.un*p.br </line>
</par>
<par>
<line> **dereço: Fernanda *l*es de *raújo </line>
<line> Edit*r-Chefe: D*. *o*ny Kerley de Alencar </line>
</par>
<par>
<line> Av. P*ulist*, 9*0 - Bela Vis**, S*o Pa*lo - SP, 013*0- </line>
<line> Rodrigue* </line>
</par>
<par>
<line> *00. Brasi*. </line>
</par>
<par>
<line> Endere*o: Luiz Rod*igo B*nette </line>
<line> Art*go receb*do </line>
<line> em 1*/06/2021. Úl**ma </line>
<line> versão </line>
</par>
<par>
<line> *v. Paulista, 900 - *ela *i*ta, São Paulo - SP, 01310- </line>
<line> *e*ebida e* 27/06/20**. Aprov*do em 28/06/2021. </line>
</par>
<par>
<line> 100. Bra*il. </line>
</par>
<par>
<line> End**eço: João Gilberto Mendes *os Reis </line>
<line> A*aliado pelo sistema Trip*e Revi*w: *esk Revie* a) </line>
</par>
<par>
<line> Av. Pauli*ta, 9*0 - *ela *ista, São Paul* - SP, 01310- </line>
<line> pelo Editor-C*efe; e b) Dou*le B*i*d Revi*w </line>
</par>
<par>
<line> 100. Brasil. </line>
<line> (avaliaç*o cega por d*is **aliado*es da á*ea). </line>
<line> Rev*s*o: Gra*atical, Normativa * de F*rmatação </line>
</par>
</page>
<page>
<par>
<line> R. L. G. Mo*aes, L. R. Doreteu </line>
<line> 18* </line>
</par>
<par>
<line> A**TR*CT </line>
</par>
<par>
<line> Transp*rtation sys*ems *emain a chal*enge for mo*t supply chains. Delivery pro*uc*s i* time, </line>
<line> quantity, and location a* once i* not *n easy task and this challe*ge is even a*pli*ied when w* </line>
<line> are dealing with Last-mile log*stics. Des**te business-to-business being *e** di*ficult </line>
</par>
<par>
<line> c**par*d t* </line>
<line> b**iness-to-c*nsume* distrib*tion, there a*e *till ma*y operational logistics </line>
</par>
<par>
<line> *s*u*s related to *t. In this paper, w* i**e*t**ated a last-mi*e logistics from a *re*ery I*dustry </line>
<line> t*ansferri*g suppl*er materials among its plants in São Pa**o, Brazil. The aim *s to identify the </line>
</par>
<par>
<line> most imp*r*ant play*rs in the n*t*o*k, offering the </line>
<line> company a more e*fective </line>
<line> *i*w of the </line>
</par>
<par>
<line> plants and </line>
<line> th*ir supp*y *ast-mile network. Therefo*e, we *sed the Soc*al *etwork Ana*ysis </line>
</par>
<par>
<line> appro*ch usin* t*e U**NET ©*o*t**re. The r*sul*s **low*d th* c*mpan* to im*rove </line>
<line> t he </line>
</par>
<par>
<line> ef*i**ency of *ts las*-mile B2* *i*tribution *or internal supplier mat*rials. </line>
</par>
<par>
<line> Keywords. City Logistics. Urb*n Freight. Beverage Industr*. Social Network Analysis. </line>
<line> Complem*ntary *aterial of Productio*. </line>
<line> RESUMO </line>
</par>
<par>
<line> Os </line>
<line> *ist*mas de *r*nspo*te continuam sendo um d**afi* </line>
<line> para a maio*ia das cadeia* de </line>
</par>
<par>
<line> abastecimento. Ter entrega, produto* *m tempo, quantidad* e </line>
<line> localização ao mes*o temp* </line>
</par>
<par>
<line> não é uma tarefa fá*il e esse desafio se amplia até *uando s* tra*a da logística do last-m*le. </line>
</par>
<par>
<line> Apes*r do Busine*s-to-Busine*s ser *enos *ifíci* em comparação com a </line>
<line> dis*ribuição </line>
</par>
<par>
<line> Business-*o- C*nsumer, ainda *xistem muitos probl*mas de logís*ica </line>
<line> operacion*l. Neste </line>
</par>
<par>
<line> artigo, *nvestigamos uma lo**stica de últi*a milha de uma *ndústria de cerveja t*a*sferi*d* </line>
<line> materiais de fornece*ores entr* suas fábricas em S*o Pa*l*, *rasil. O objetiv* é iden*ificar os </line>
<line> *layers *ais importantes da red*, of*r*cen*o à empres* uma visão mais ef*ca* das f*bricas e </line>
<line> da r*de *e las*-mile de a*as*ecimento. Porta**o, usamos * *bordagem de An*l*se de Redes </line>
</par>
<par>
<line> *oci*is **m </line>
<line> o software UCIN*T ©. *s </line>
<line> resultados permitiram * empresa apr*morar </line>
<line> a </line>
</par>
<par>
<line> efici*ncia da d*stribuiçã* la*t-mi*e de ma*eriais de for*ecedo*es internos. </line>
<line> Keywor*s. Cit* Lo*ist*cs. Urban Fre*ght. Ind*stri* d* Bebidas. Soc*a* Ne*w*rk An*lysis. </line>
<line> Mat*riais Sec*ndário*. </line>
</par>
<par>
<line> Rev. FSA, Te*esina, v. 18, n. 7, art. 12, p. 187-*98, jul. 2021 </line>
<line> *ww4.fsan*t.com.br/revista </line>
</par>
</page>
<page>
<par>
<line> Castra**o Química de *riminos*s Frente ao Ordenamento Constituci*nal Brasil*iro </line>
<line> 18* </line>
</par>
<par>
<line> * </line>
<line> IN*RODUCTION </line>
<line> For *he last ***ades, s*veral re*earch projects an* init*a*ives ha*e *ee* inv*stig*t*ng </line>
</par>
<par>
<line> solutions in order to improve *ransportatio* *ystems. Transpor*ation is a ne*d to </line>
<line> * he </line>
</par>
<par>
<line> pro**c*ion proces* and logis*ics must be unde*st*od as an essential paradig* to s*pply ch*in </line>
<line> manageme*t. Despite i** releva*ce, last-m*le log*stics remains one of the main ch*lleng** in </line>
<line> transpor*ation (*l***r*e*, 2019). </line>
</par>
<par>
<line> *a*t-mile *an be define* as t*e f**al leg in a b*siness-to-consumer (B2C) </line>
<line> deliver* </line>
</par>
<par>
<line> se*vi*e whereby the consignment is *elivered to *he recipient in-home o* a* a c*lle*tion point </line>
<line> (*ev*ers *t **., 2014). Despite t*e *act the last mile to b* related to the end-us*r i*e*, it can b* </line>
<line> see* in the con**xt *f *usiness-to-*u*iness (B2B) whereas *he e**-***r may be *n employee or </line>
</par>
<par>
<line> a stakeho*der. Moreover, in this case, last-mile rep**sents the d**i*ery pro*ess from </line>
<line> * he </line>
</par>
<par>
<line> *are*o**e or a d*s*ributi** center to t*e recipient (Lin et al.,2*16). </line>
</par>
<par>
<line> The B2B l**t-m*l* is s*bject to the same i*sues as th* B2C's *n regards to **e delivery </line>
<line> w*ndow, local g*vernment i*ter*en*i*n, c*mplex network d**t*ibution, vehic*e **strict*ons, </line>
</par>
<par>
<line> a*d so *n (Juhás* & Bány**, 2*18) (Faccio & G**beri, 2**5). According to Aljoh*ni </line>
<line> and </line>
</par>
<par>
<line> T*om*son </line>
<line> (2020), a*though busines*-to-consume* (B2C) and cons*m*r-t*-con*umer (C2C) </line>
</par>
<par>
<line> *eliv*ries account **r * </line>
<line> *arger s*are of parcel deli*eries *n ur*an areas, bu*iness-*o-*us**ess </line>
</par>
<par>
<line> (B*B) deliveries still ac*oun* for a noticeab*e *har* in th* *rban freig*t indu**ry, </line>
<line> t h* * s t i l l </line>
</par>
<par>
<line> ar*u* th*t *ecent trends and ope*ational challen**s *ave d*iv*n a g*ea* deal of rese*rc*, </line>
</par>
<par>
<line> es*ecial*y wi** *igher fo*us on B2C an* C2C *eliveries, due to the emergence of online a </line>
<line> shop*ing, c*owd shipping and omnichanne* retailing. </line>
</par>
<par>
<line> Most Indus*ries are changing fas*, part of t*e th Industry Revo*ut**n (Indus*r* 4.0) 4 </line>
<line> ac*ording *o Schwab (*01*) s*l*ing o*r common *hal*e*ges r*quires radical w*ys of </line>
<line> thinking; *echn**ogie* *h*t re**ace hum*n *abor, se*ere climate chan*es, *ajo* co*cern* </line>
</par>
<par>
<line> ab*ut inequality, and the </line>
<line> prospects *or e**n*mic insecurity *r* undermin**g the models and </line>
</par>
<par>
<line> p*radigms on w*ich our society **sts. It m*an* a*l sta*eholde*s s*o*ld assu*e their </line>
</par>
<par>
<line> responsib*lity to ** someth**g rev*lutionary *r *ncremen*al to guara*tee </line>
<line> log te*m </line>
</par>
<par>
<line> i*provemen*s. In this *onte*t *h*se Indus*ries face c*alle*ges to meet their customer </line>
<line> and </line>
</par>
<par>
<line> *ociety expe*ta*ion*, Bon*lla et al. (2*18) arg*e tha* in this complex scenario of pressi*g *lobal </line>
<line> enviro*mental (and other) *halle**es, In*ustry 4.0 emerge* fro* the sy**rgy of the </line>
</par>
<par>
<line> availab*lit* of inno**tive digita* technolog* and the demand </line>
<line> *y *onsumers fo* </line>
<line> hig* q**lity </line>
</par>
<par>
<line> Rev. *SA, Teresina PI, v. 18, *. 7, art. 12, p. 18*-198, j*l. 2*21 </line>
<line> w*w4.fsanet.com.*r/re**sta </line>
</par>
</page>
<page>
<par>
<line> *. L. G. Moraes, L. R. Dor*teu </line>
<line> 190 </line>
</par>
<par>
<line> *nd cu*tomiz*d **oducts. Is clear that Industry 4.0 and its too*s have a ro*e on boos*ing </line>
<line> p*oductivi*y, *eve*ue growth,*nd comp*ti*iven**s. </line>
<line> On* of the Indus*ries\ *up**y chai*s *hat requi*e e*fective planning their Supply Chain, </line>
<line> especia**y *ast-mile l*g*stic* in the brewery sect*r. This kind of *ndus*r* req**r*s many plants </line>
<line> of **st*ibution t* *i*l u* b*rs, resta*ran*s, *nd s*perm*rkets de*ands. I* a continental countr* </line>
<line> like Brazil, th*se chall*nges are even *igher. How*ver, it is *ot last-**le regarding th* fin*l </line>
</par>
<par>
<line> customer* that this partic*lar </line>
<line> supply c*ains n**d to control but they must be able to </line>
</par>
<par>
<line> interconnect these **ants *o tr*nsf*r resources among them. Those *esour*es are </line>
</par>
<par>
<line> complementary material </line>
<line> of pr*duc*io*, raw *ate*ial, piec*s of equipment, et*, *xtre***y </line>
</par>
<par>
<line> impor*ant to delive* *he *inal produc*. </line>
</par>
<par>
<line> The company *tudied is the </line>
<line> bi*gest beer produ*er in Brazi* - a cen*enary company </line>
</par>
<par>
<line> *ow part of *n as*ociation wi*h Belgium's *nd American's br*wery com*ani*s. The company </line>
<line> is resp*nsible *or **ou*d 60% of t*e i*ternal marke* (Fre*tas, 2019). With plant* *hroughout </line>
<line> the count*y, t*e company manages the ch*lleng* to link t*ei* plants and dis*ri*ution centers to </line>
<line> share resource* with t*e id*a *o red**e cost*. </line>
<line> T*e p*esent study **alyzes the resources *ra*sferred among these p*a*ts and distribution </line>
</par>
<par>
<line> c**t*r* </line>
<line> in São Pau** state. * province </line>
<line> with *0% </line>
<line> o* Brazili*n inhabita*ts. Th* idea is to </line>
</par>
<par>
<line> investigate </line>
<line> this last-mile case using networ* me*rics </line>
<line> *nd gra*h*cs </line>
<line> based *n S*cial Network </line>
</par>
<par>
<line> Anal*sis. The </line>
<line> **ntribution of th* p*per is *hed light to t*e discussi*n of la*t-mile pr*blems </line>
</par>
<par>
<line> and their im*ort*n*e f*r productio* m*nagemen*. </line>
</par>
<par>
<line> 2 THEORETICAL REFERE*CE </line>
</par>
<par>
<line> 2.1 Social Network Ana*ys*s Ap*ro*ch </line>
</par>
<par>
<line> Social n*twork ana*ysis (*NA) is based on the </line>
<line> prem*se t*at society is forme* by </line>
</par>
<par>
<line> *elations *nd *atterns (Marin & Wellman, 201*). There*ore, culture and nature are structu*ed as </line>
<line> a network *f *ra*ns, organisms,org*ni*ations, ec*no*ies, and consis* in a w** o* *hinking that </line>
<line> focuses on att*ntion on the rel*tionshipsamong the entities, a*to*s, or node* (Borgatti, 2018). </line>
<line> Consequently, it i* possib*e to *tudy th**e st*uctures *a*ed on gr*ph*cs a*d metrics m*asures. </line>
</par>
<par>
<line> *h* gr*phi* theory provides * </line>
<line> qualitative un*erstanding </line>
<line> that is hard to *b*ain *uantit*tiv*ly </line>
</par>
<par>
<line> (Bo*gatti, 20*8). </line>
</par>
<par>
<line> This wa*, w* can identify the clusters and re*at*o*s co*sidering the al*gnment of the </line>
<line> *od*s, *he *umb*r of **tr*es and sub*rap*s. </line>
<line> Rev. FSA, Teresina, v. *8, n. 7, art. 12, p. 187-198, jul. 20** www4.fsan*t.com.br/revist* </line>
</par>
</page>
<page>
<par>
<line> Cas***ção Quím*ca *e Criminosos Frent* ao Orde*amento Con*tit*cio*al *rasile*ro </line>
<line> 19* </line>
</par>
<par>
<column>
<row> On the other hand, S*A offers the chance t* test th* role o* the nodes inside the </row>
<row> n*twork using quantitative me*rics. Netw*rk analysis descr*bes how the ac*or i* lin*ed i* a </row>
<row> relation** network (Hanne*an & Riddle, 2014). </row>
<row> Centrali*y, for insta**e, re*resents *he structu*al *mporta*ce of a n*de and is divide in </row>
<row> th*eefold: </row>
</column>
<par>
<line> (1) </line>
<line> Degree - *hich m*a** th* num*er of **es of a given type *hat * *ode has; </line>
</par>
<par>
<line> (2) </line>
<line> Closeness - which means the su* of geodesic distan*es from a nod* to all othe*s; </line>
</par>
<par>
<line> (3) </line>
<line> Betweenne*s - *hich mean* how o**en a gi*e* node f*lls along the shortest p*t* b****en </line>
</par>
<column>
<row> tw* othernodes. Finall*, anothe* im*ortant measure is t*e k-co*e *hat consists of a subgrap* in </row>
<row> *hich eve*y a**orh*s degree k or more with th* othe* a*tors in the subgraph. I* is a su*-grap* </row>
</column>
</par>
<par>
<line> present in e*c* ne**ork (B*rga*ti, 2018). In the methodology </line>
<line> section, we p*esen*ed </line>
<line> t he </line>
</par>
<par>
<column>
<row> applic*tion m*thod of SNA and ** th*results and di*cussion sectio* our findings and analysis </row>
<row> o* the u** of these measures. </row>
</column>
<par>
<line> 3 </line>
<line> METHODOL*G* </line>
<line> The *urren* study uses a dataset of o*e of the bi*gest Brazilian Bre**ry compani*s to </line>
</par>
<column>
<row> identify and analyze the flow of m*terials among plants in Sã* Paulo state, Brazil. </row>
<row> A tot*l of 5,483 deliveries wi*hin th* ten most impo*t*n* **ant* for *argo vol*me were </row>
<row> used. These plants are located in the citie* of *gudos, Iracemápolis, Ja*ar*í, Jaguariúna, </row>
<row> Limeira, Lins, Ri**irão Pr***, *ã* Berna*d* do C*mpo, São José d** Campos e S*o Paulo. </row>
<row> *hese fi*ur*s volumes were *rocessed using the Micr*soft E*ce* © in order to </row>
<row> estab*ish a rel*t*onshi* between plants *n kilos, Table 1. Figures may be used to i*lust*ate t*e </row>
<row> arti*le a*ways when it *ecessar*. </row>
<row> Ta*le 1 - Cities Dataset </row>
</column>
</par>
<par>
<line> C*TIES </line>
<line> AGU </line>
<line> IR A </line>
<line> JAC </line>
<line> JAG </line>
<line> LIM </line>
<line> LI* </line>
<line> RIB </line>
<line> * *R </line>
<line> J OS </line>
<line> PAU </line>
</par>
<par>
<line> AGU </line>
<line> * </line>
<line> 0 </line>
<line> 90*6 </line>
<line> 112* </line>
<line> 68 </line>
<line> * </line>
<line> 0 </line>
<line> *9 </line>
<line> *200* </line>
<line> 3*83 </line>
</par>
<par>
<line> IR A </line>
<line> 821 </line>
<line> 0 </line>
<line> 0 </line>
<line> 0 </line>
<line> * </line>
<line> 0 </line>
<line> 3461 </line>
<line> 0 </line>
<line> 11586 </line>
<line> **318 </line>
</par>
<par>
<line> JA* </line>
<line> 158** </line>
<line> 0 </line>
<line> 0 </line>
<line> 14512 </line>
<line> 0 </line>
<line> 0 </line>
<line> 0 </line>
<line> * </line>
<line> 1020 </line>
<line> 4578 </line>
</par>
<par>
<line> *AG </line>
<line> 7453 </line>
<line> 0 </line>
<line> 349 </line>
<line> 0 </line>
<line> 10 </line>
<line> * </line>
<line> 1626 </line>
<line> 1 </line>
<line> 9* </line>
<line> 404 </line>
</par>
<par>
<line> LI* </line>
<line> 1188 </line>
<line> 0 </line>
<line> 7847 </line>
<line> 3829 </line>
<line> 0 </line>
<line> 0 </line>
<line> 47 </line>
<line> 0 </line>
<line> 0 </line>
<line> 47 </line>
</par>
<par>
<line> LI* 1**1125 </line>
<line> 0 </line>
<line> 246*006 16*0084 </line>
<line> 0 </line>
<line> 0 </line>
<line> 1*2801 </line>
<line> * </line>
<line> 1*228 271490 </line>
</par>
<par>
<line> RIB </line>
</par>
<par>
<line> 2342 </line>
<line> 0 </line>
<line> 1600 </line>
<line> 105 </line>
<line> * </line>
<line> 0 </line>
<line> 0 </line>
<line> * </line>
<line> **6 </line>
<line> 1357 </line>
</par>
<par>
<line> B ER </line>
<line> 77187 </line>
<line> 0 </line>
<line> 795*3 118187 </line>
<line> 0 </line>
<line> 0 </line>
<line> 161 </line>
<line> 0 </line>
<line> 44 </line>
<line> 21*1 </line>
</par>
<par>
<line> * OS </line>
<line> 2835 </line>
<line> 0 </line>
<line> *540 </line>
<line> 456 </line>
<line> * </line>
<line> 0 </line>
<line> 19 </line>
<line> 0 </line>
<line> 0 </line>
<line> *1* </line>
</par>
<par>
<line> *AU *97926 </line>
<line> 0 </line>
<line> 1*13467 3*1120 </line>
<line> 3 </line>
<line> 0 </line>
<line> 12404 </line>
<line> * </line>
<line> 169 </line>
<line> 0 </line>
</par>
<par>
<line> ***rce: Aut*ors (2020). </line>
</par>
<par>
<line> Rev. FSA, Ter*sina PI, v. *8, n. 7, art. 12, p. 187-1*8, jul. 2*2* </line>
<line> *ww4.fsanet.com.br/*evist* </line>
</par>
</page>
<page>
<par>
<line> R. *. G. Moraes, L. R. Dore*eu </line>
<line> 192 </line>
</par>
<par>
<column>
<row> I* order to c*eate a network, we i*put data in the Ucinet ©versi*n 6.697 and using the </row>
<row> module N*tdraw© we create* a netwo*k of pla*ts t*king into cons*dera*i*n the mat*rial </row>
<row> indexed in kilos, *i*ure 1. </row>
<row> Fi*ally, *e a*alyzed the netwo*k metrics to unders*and th* network *el*tionships </row>
<row> using netwo*k graphi*s and *o*ial Netw*rk Ana*ysi* metrics. For a better un*e*st*nding of </row>
<row> t*e res*lts, th* explanation revolving a*ou*d SNA metric* w*re in*luded d*re*tly *n the </row>
<row> Results and Di*cussion section. </row>
<row> I* is important t* highlight that t*e aim of the pap*r *s not generaliz*d a model to b* </row>
<row> use* in all the s*pply **ains, but it shows the role *f SNA in org*nizin* *nd an*lyzing the </row>
<row> rel*tionship betw*en different nodes, especially in *his case brewer* companies plants and </row>
<row> distribution centers. </row>
</column>
<par>
<line> 4 </line>
<line> **SUL** AND DISCUSSION </line>
<line> Regard*ng **e typ* of the material network, we could identify that the network is </line>
</par>
<column>
<row> bidire*ti*n*l, wh*ch means that i* o*es in both *ire*tions towards the players, indegr*e and </row>
<row> outdegree, Figure 1. </row>
<row> Figur* 1 - Mate*i*l *istributi*n n*twork </row>
</column>
</par>
<par>
<line> Source: Autho*s (2020). </line>
</par>
<par>
<line> Rev. FS*, *eresina, *. 1*, n. 7, art. 12, p. 1*7-198, **l. 2021 </line>
<line> www4.fsanet.co*.b*/revista </line>
</par>
</page>
<page>
<par>
<line> Castração Quími*a de *riminosos Frente ao Orden*ment* Consti*uciona* Brasileiro </line>
<line> 193 </line>
</par>
<par>
<line> The centrality degree measures the number of ties the *etwork presents an* it can b* </line>
<line> me*sured *o** as *nde*ree, which is the measuring of many *alls *hat an acto* rec*iv*s *rom </line>
<line> another, indicatingpopu*ari*y *r r*cept**it*, and outdegre* is th* *easure*ent of th* nu*ber </line>
</par>
<par>
<line> of *onnections that an act*r **tablishes with o*her *ctors in th*s </line>
<line> network, indicating </line>
</par>
<par>
<line> exp*ns*ve*ess (Wassermann & Faust, 1*94). The ind*gree and ou*degree of the network can </line>
<line> be see* in Fi*ure 2. </line>
<line> F*gur* 2 - Two-node net**rk: indeg*ee a*d outdegree </line>
</par>
<par>
<line> So*rce: Authors (202*). </line>
<line> Our outdegre* networ* (circle) s**wed that p*ant of Jaguariuna (JA*) is th* mo*t </line>
<line> *mpor*an* node to the delive*y syste* *onne*ting 86.**% of the nodes. Lin* (LI*), São *au*o </line>
<line> (PAU), *ão B*rna*do do Camp* (BER) * Agudos (AGU) are *n se*ond place conn*ct*ng </line>
</par>
<par>
<line> 6 7 .0 0 % o f </line>
<line> the no*es. Consid*ring the outd*g*ee network (squ*re), São Paulo (PAU) and </line>
</par>
<par>
<line> *gudos (*GU) link all the n*des, followed by Jaca**i (JAC), Ja*uari**a (JAG) and Sã* José </line>
<line> *os C*mpos (J*S) connecte* to 8*.88%. N*te that Lins(LIN) and I*a*emá*oli* (*RA) ar* on*y </line>
<line> ou*lets. Consi*eri*g the i**egree *nd outdegre* indic*tors *n* *he volumes, we plo***d a </line>
<line> de*ree centr**ity networ*, Figure 3. </line>
</par>
<par>
<line> Rev. FSA, Ter*sina P*, v. 1*, n. *, art. 12, p. *8*-*98, jul. 202* </line>
<line> www4.fsan*t.com.br/rev*sta </line>
</par>
</page>
<page>
<par>
<line> R. L. G. Moraes, L. R. Doreteu </line>
<line> 194 </line>
<line> *igure * - Degree ce**ralit* ne*work </line>
</par>
<par>
<line> Source: Author* (2020). </line>
</par>
<par>
<line> *ote t*at São Paulo (P*U), A*udos (AGU), Ribeirão *reto (RIB), Jacarei (J**) and </line>
<line> Jaguariuna (JAG)*re the mo*t cent*al player* of the network. I*teresting to no** that Ribeirão </line>
<line> *reto *o** not *a*e **e bi*ges* **degree and outde*ree, but consolidating b**h linked to the </line>
</par>
<par>
<line> v*lume this sit*ation </line>
<line> cha*ges. Thi* result just*fies this further analys*s. Another imp**tant </line>
</par>
<par>
<line> centrality measu*e in a network is betweenn*ss a** closen*ss, represented in Fi*ures 4 and 5. </line>
<line> A node can lie *etween a pair of *on-a*jacent *odes, either alo*g **th their mat*rial ow or </line>
</par>
<par>
<line> contractua* relationship. In </line>
<line> graph theory, betweenness is dev*l*ped mainly as a m*tric, </line>
</par>
<par>
<line> studied **i*g t*e sho**est path in a connecte* gr*ph (Changat et al., 2019). In our *esea*ch, </line>
<line> São Berna*do do Ca*p* (BER), Limeira (LIM), Iracemápolis (*RA), *nd Lins (LIN) ha*e t*e </line>
<line> *ighest de*ree of betwee**ess th** m*ans they are t*e most important nodes to *h* con*ectio* </line>
<line> *f the network. </line>
<line> Closeness centra*ity *s an in*ex de *ed in t**m* of a distance, it is the shortest distan*e </line>
<line> *n between *he nod*s *n the net*o*k (Brandes *t al., 2016). In t*is case, Sã* Paulo (PAU), </line>
</par>
<par>
<line> *ibeirão Preto (RIB) and *gud** (**U) </line>
<line> are pre*ented as the m*st i*po*tant nodes in the </line>
</par>
<par>
<line> netw*rk. Fig**e 6. </line>
</par>
<par>
<line> Rev. FSA, Teresina, v. 18, n. 7, art. *2, p. 187-198, jul. 2021 </line>
<line> www4.fs**et.com.b*/revist* </line>
</par>
</page>
<page>
<par>
<line> *a*t*ação Química *e Crimin*sos Fr*n*e a* O*denamen** Constituciona* Br*sileiro </line>
<line> *95 </line>
</par>
<par>
<line> Figure 4 - Betweenness cent*ali*y </line>
</par>
<par>
<line> Sour*e: *ut*ors (2020). </line>
<line> Figure 5 - *l*seness cen*rality </line>
</par>
<par>
<line> Sourc*: *uthors (*020). </line>
</par>
<par>
<line> Rev. F**, *eresina PI, v. 1*, n. *, *rt. 1*, *. 187-*98, jul. 2021 </line>
<line> www4.f*an*t.com.br/revi*ta </line>
</par>
</page>
<page>
<par>
<line> R. L. G. Moraes, L. *. Doreteu </line>
<line> 196 </line>
<line> Figure 6 - K-core </line>
</par>
<par>
<line> **urce: Au*h*rs (2*20). </line>
</par>
<par>
<column>
<row> *ccording to IBM, the k-Core is a *easurement that can help identi*y *mall- </row>
<row> inte*linked cor* areas on a netw*rk (IBM, 2020). O** network displa*ed homogeneity o* </row>
<row> re*atio*ships apart from Limeira (LIM) a*d *racemápolis (IRA). </row>
</column>
<par>
<line> 5 </line>
<line> CONCLUSION </line>
<line> This stu*y pres*nts different *o**al network ana*ys*s meas**e* to analyz* a B2B </line>
</par>
<column>
<row> mat*rial last-m*le dist**but*o* of a Brewery I*dus*ry *n Brazil. The result* *how the relevance </row>
<row> *f SNA in evaluati*g thestructu*e of a ne*wo*k in order to *elp i*dustrial planni*g t* make </row>
<row> better decisions. </row>
<row> Our co*clusio*s is that São Paulo (PAU), Agudos (AGU) and Ribeirão *re*o a*e the </row>
<row> main players of the network and the mai* attention *f the In**stry needs to be focused on *he*e </row>
<row> plant, in orde* t* taki*g m*asures to *educe c*sts of last-mi*e *istribut**n. </row>
<row> The *mportance *f using dif*e*ent SN* mea*ures is to avoid t*e industri*l managers </row>
</column>
</par>
<par>
<line> m*ke d*cisions based only in the evidence that o*e no*e presents more relevance in </line>
<line> t he </line>
</par>
<par>
<line> network. As p*esented i* t*is study, *o*e plants *ortrayed in o*e analysis **t incons*s*ent </line>
<line> w*en considere* all the measu*es. This s*udy is an attempt to provide * technical perspe*tiv* </line>
<line> to *ndustrial decision-*akers u*in* th* ap*roach of network analysis. </line>
<line> Re*. F*A, T*resina, v. *8, n. 7, art. 12, p. 187-198, jul. 2*21 w*w4.f*a*et.com.br/revi*ta </line>
</par>
</page>
<page>
<par>
<line> *astraçã* Químic* *e Crimin*s*s Frente ao O*denamento Constituc**nal Brasile*ro </line>
<line> 197 </line>
</par>
<par>
<line> ACKNOWL*DGMEN*S </line>
</par>
<par>
<line> Th*s study was financed in par* b* the Co*rdi*ation of Impro*eme*t of Personal </line>
<line> *igher **uca*i** -*razi* (CAP*S) - *inan*e Code 001. </line>
<line> REFEREN*ES </line>
<line> Alj*hani, K., & Thompson, R. G. (2020). An Examination of Las* Mile *el*very Practices *f </line>
</par>
<par>
<line> Freig*t Carri*rs S*rv*cing Business Recei*ers </line>
<line> in *nner-City Areas. Sustainability, 12(7), </line>
</par>
<par>
<line> 283*. https://doi.org/10.3390/su1207283* </line>
</par>
<par>
<line> Alte**ied, M. (2019). On the last mile: logis*ical urbanism and the transformation of labour. </line>
<line> Wor* Organisation, *abour & *lob*lisa**on. *STO*, *3(1), 114-12*. </line>
<line> Bonilla, S., *ilva, H., Terra da Silva, M., Franco Gonçalves, R., & Sacomano, J. (2018). </line>
<line> I*dustry 4.0 and **stai*ability Impli*ations: A Scenario-Based Analysis *f the I**acts and </line>
<line> Ch*llen*es. Sus**inab*lity, 10(10), 3740. http*://doi.org/10.339*/su10103740 </line>
<line> Borgatti, S.P., Evere**, *.G., Johnson, J.C. (**18). Analyzing social netwo*k*. Sage. </line>
<line> B*andes, U., B*rg*tti, S.P., Freeman, L.C. (2016). Ma*ntaining the duality of closenes* and </line>
<line> betwe*nnes* *entrality. Soci*l Networks 44, 153-159. </line>
<line> Changat, M., Na*asimha-She*oi, P.G., Seethakuttya*ma, G. (2019). Betwee*ne** in graphs: </line>
</par>
<par>
<line> A sho*t survey </line>
<line> on shortest a*d indu*ed pa*h betw*enness. AKCE Internatio*a* Journal of </line>
</par>
<par>
<line> Graphs and *ombinatorics 16(1), 96-109. </line>
<line> Facci*, M., G*mberi, M. (2015). *ew city *ogistics paradigm: F*om **e last mil* to *he last 50 </line>
<line> m*le sus*ainable distribution 7(11), *4*73-*4894. </line>
<line> F*ei*as, C.F. (2019) In*ográfico. Market s**re d* v*ndas de cer*eja *o brasil em 2*19. </line>
</par>
<par>
<line> Gevaers, R., Van </line>
<line> de Voo*de, E., *anelslander, *. (2014). C*s* modelling and simula*ion *f </line>
</par>
<par>
<line> last-mile characteristics i* an in*ov*tive b2c *upply chain *nvironment wi*h i*pli*ations on </line>
<line> u*ba* a*eas a*d cities 125, 398-411. </line>
<line> Hanneman, *.A., R*ddl*, M. (201*). C*ncepts *nd Measures *or Basic N*twork An*l*sis. In: </line>
<line> The S**E Handbook of S*cial Network Analy*is, SAGE Pub*ica**ons Ltd, 1 Oliver's Yard, </line>
<line> 55 C*ty Road, L**-don EC1Y 1*P *ni*ed King*o*, 340-*69. </line>
</par>
<par>
<line> IBM. </line>
<line> (2020). </line>
<line> K-cor*. </line>
<line> Retrieved </line>
<line> from </line>
</par>
<par>
<line> https://www.ibm.com/suppo*t/kn*wledgecenter/en/SSXVX*_*.*.0/co*.ibm.i*.anb.doc/about </line>
<line> _k_c*r*.ht*l </line>
</par>
<par>
<line> Juhász, J., Bányai, T. (2018). Last mile </line>
<line> logistics: an *n*egrated view 448, reporter: I*P </line>
</par>
<par>
<line> Conferenc* Seri*s: Ma*erials Science and Engin*ering, *-10. </line>
</par>
<par>
<line> Re*. FSA, Tere*ina PI, *. 18, n. 7, art. 12, *. 187-**8, jul. *021 </line>
<line> www*.f*an*t.*om.br/r*vist* </line>
</par>
</page>
<page>
<par>
<line> R. L. G. M*raes, L. R. Doreteu </line>
<line> 198 </line>
</par>
<par>
<line> Lin, *., *hen, Q., K*w*mura, K. (2016) Su*tainabi*ity SI: Logis*ics cost an* environmental </line>
<line> impact ana*yses of *rba* deliver* conso*id*tion stra*egies 16(1), 227-25*. </line>
<line> Marin, A., Wellman, B. (2014). *ocia* Networ* Analysis: An Int*oduction. In: The SAGE </line>
<line> Hand*ook of S**ial N*two*k Analysis. SAGE P**lications Ltd, 1 Oliver's Yard, 55 *ity Ro*d, </line>
<line> *ondon EC1Y 1SP United Ki**dom, 11-25. </line>
<line> Schw*b, Klaus. Shaping the fourth industrial revo*ution. São P**lo: EDIPRO, 2018. *SB* </line>
<line> *78-85-521-0024-9. </line>
<line> Wa*serman, S., & Faust, *. (1*94). *tr**tu*al an*lys*s in *he soci*l sci**ces.Socia* n*tw*rk </line>
</par>
<par>
<line> analysis: </line>
<line> Me*ho*s </line>
<line> an* </line>
<line> application*. </line>
<line> Cambridge </line>
<line> University </line>
<line> Pr*ss. </line>
</par>
<par>
<line> https://doi.*rg/10.1*17/CBO97805*1*1547 </line>
</par>
<par>
<line> Co*o Referenciar est* A*tigo, conforme ABNT: </line>
<line> A*A*JO, F. A; BO*ETTE, L. R; RE*S, J. G. M. Usin* SNA t* *mpr*ve *2B L*s*-*ile in Industry </line>
<line> Se*tor. Rev. FSA, Teresi*a, v.18, n. 7, art. 12, *. 187-198, *ul. 2021. </line>
</par>
<par>
<line> Con**ibuição dos Autores </line>
<line> F. A. Ara*jo </line>
<line> L. R. *onet*e </line>
<line> J. G. M. R*is </line>
</par>
<par>
<line> 1) c*ncepção e planejam*n*o. </line>
<line> X </line>
<line> X </line>
<line> X </line>
</par>
<par>
<line> 2) anális* * interpret*çã* dos dados. </line>
<line> X </line>
<line> X </line>
<line> X </line>
</par>
<par>
<line> *) ela*o*açã* *o rasc*nho ou na revisão crítica do cont*údo. </line>
<line> X </line>
<line> X </line>
<line> X </line>
</par>
<par>
<line> 4) part*cipaç*o *a *provação da ver*ão f**al *o manuscrito. </line>
<line> X </line>
<line> X </line>
<line> X </line>
</par>
<par>
<line> Rev. FSA, Teresin*, v. 18, n. 7, art. 12, p. 187-*98, jul. 2021 </line>
<line> www4.**anet.c*m.br/revista </line>
</par>
</page>
</document>

Apontamentos

  • Não há apontamentos.


Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.

Ficheiro:Cc-by-nc-nd icon.svg

Atribuição (BY): Os licenciados têm o direito de copiar, distribuir, exibir e executar a obra e fazer trabalhos derivados dela, conquanto que deem créditos devidos ao autor ou licenciador, na maneira especificada por estes.
Não Comercial (NC): Os licenciados podem copiar, distribuir, exibir e executar a obra e fazer trabalhos derivados dela, desde que sejam para fins não-comerciais
Sem Derivações (ND): Os licenciados podem copiar, distribuir, exibir e executar apenas cópias exatas da obra, não podendo criar derivações da mesma.

 


ISSN 1806-6356 (Impresso) e 2317-2983 (Eletrônico)